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ABSTRACT 

Behavior of Steel Plates Under Axial Compression and Their Effect  

on Column Strength 

 

By 

Ahmed Hasan Ahmed Al-Wathaf 

 

Supervisor 

Prof. Yasser Hunaiti 

 

An experimental study is conducted to investigate the behavior and postbuckling 

strength of plate elements in square and rectangular steel hollow sections having width-

thickness ratios more than that in common rolled sections and their effect on the 

strength of columns. Two types of stub columns are tested under axial compression 

until failure; ordinary tubes and tubes reinforced by longitudinal stiffeners. 

Based on the test results, two empirical compact equations for the effective section 

take into account the interaction between plate elements are formulated to predict the 

postbuckling strength for both types. The interaction strength of columns having tube 

sections is predicted using the modified SSRC column strength equations to consider 

the effect of local buckling of plate elements. All the results are compared with the 

relevant formulas and the AISC specifications. 

The test results show that the used formula in steel practice slightly overestimates 

the postbuckling strength. It is shown that the discrepancies between the proposed 

postbuckling strength and the test results are within an acceptable range and, 

consequently, the proposed effective section equations by this study may be used for the 

tested sections. 

Using longitudinal stiffeners in which some tested sections become entirely 

effective as rolled sections can attain distinct increasing in the postbuckling strength. 

The improvement in postbuckling strength is obviously shown in tube sections with 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com
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higher slenderness ratios of plate elements. The test results also show that the smaller 

stiffeners are relatively more efficient in increasing the strength compared to their size. 

The interaction column strength curves obviously show that the interaction 

between local and overall flexural buckling begins at relatively lower stress for sections 

with higher slenderness ratios of plate elements. Furthermore, the proposed interaction 

strengths for ordinary tubular columns are relatively closer to the predicted strength by 

the AISC, ASD and LRFD, for the sections with relatively lower slenderness ratios of 

plate elements. 
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Chapter 1 

INTRODUCTION 

 

 

1.1  General 

   Most structural steel members are composed of flat plate elements, which form 

flanges and webs of the cross sections. The performance of these members to carry 

loads depends mainly upon the properties of the members as a whole as well as the 

properties and the behavior of the plate elements. 

Two cases of instability may occur in a steel column; overall (global) column 

instability and plate element (local) instability. Local buckling of plate elements in a 

steel column can cause premature failure of the entire section and reduce the overall 

strength. The mode of failure and load carrying capacity of steel columns are affected 

by the behavior of plate elements and the interaction between local and overall 

buckling. 

 

1.2  Plate Elements in Steel Members 

Wide varieties of structural steel shapes are manufactured. The cross-sectional 

shape and the size are governed by the arrangement of the material for optimum 

structural efficiency, functional requirements, dimensional and weight capacity of 

rolling mills, and material properties. These four sets of criteria lead, for most cases, to 
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 2 

use steel sections consist of an assembly of flat rectangular plates joined at right angle 

to form flanges and webs of their cross sections. 

Fig.1.1 shows a number of cross-sectional shapes for metal compression or 

flexural members. Except for the hollow cylinders Fig.1.1a, all members are composed 

of connected elements which, for purposes analysis and design, can be treated as flat 

plates. When a plate element is subjected to direct compression, bending, shear, or a 

combination of these stresses in its plane, theoretical critical loads may be evaluated 

indicating that the plate may buckle locally before the member as a whole becomes 

unstable or before the yield stress of the material is reached. Such behavior is 

characterized by distortion of the cross section of the member. The almost inevitable 

presence of initial out-of-straightness may result in a gradual growth of cross-sectional 

distortion with no sudden discontinuity in real behavior at the theoretical critical load. 

The theoretical critical load for a plate is not necessarily a satisfactory basis for 

design, since the ultimate strength can be much greater than the critical buckling load. 

For example, a plate loaded in uniaxial compression, with both longitudinal edges 

supported, will undergo stress redistribution as well as develop transverse tensile 

membrane stresses after buckling that provide post-buckling support. Thus additional 

load may often be applied without structural damage. Initial imperfection in such a plate 

may cause bending to begin below the buckling load, yet unlike an initially imperfect 

column, the plate may sustain loads greater than the theoretical buckling load. 

  

1.3 Local and Overall Buckling of Steel Members 

The effect of local plate buckling on the strength of the entire member depends 

upon the location of the buckled element, its buckling and post-buckling strength, and 

the type of the member. 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 3 

 

 

 

  

Thin-walled structures are susceptible to local buckling if the in-plane stresses (i.e. 

stresses in the plane of the plate elements) reach their critical value. If this happens, the 

geometry of the cross-section of the structure changes. However, if a thin-walled 

column is made sufficiently long it may suffer overall buckling before it buckles 

locally. This means that thin-walled structures must be designed against both local and 

overall buckling. Theory and experiments show that these two phenomena can interact 

Fig.1.1   Compression or flexural members (Galambos, 1998) 
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and when this happens the buckling load can be depressed below the value of the 

individual buckling loads (Murray, 1986).  

Local buckling of thin plate elements of a rectangular hollow strut (stub column) 

can be investigated to explain this type of behavior. The length of the strut is chosen to 

avoid overall flexural buckling (such as the stub columns of this experimental study). 

As the load increases it is observed that ripples, or wavelike deflections, appear along 

the length of the plates forming the sides of the rectangular tube. The deformations are 

characterized by the fact that the corners of the tube, the junctions between the flat 

sides, remain essentially straight. The magnitude of these out-of-plane deflections 

increases with the load in a nonlinear fashion and is accompanied by a corresponding 

nonlinear decrease in axial stiffness. The load carried by the strut reaches a maximum 

when the corners “crumple” or alternatively the plate elements develop a plastic 

mechanism. The most important feature in this behavior is that, due to this local 

collapse, the strut fails at a maximum load, which has a lower magnitude than crushing 

load (Walker, 1975). 

Slender compression members that are not susceptible to torsional, or flexural-

torsional buckling will lose their stability by flexural buckling. Doubly symmetric 

sections and closed sections, axially loaded, do not have any tendency to twist if they 

are of dimensions commonly used in structures. 

 

1.4 Rectangular Plates with Stiffeners 

Increasing the thickness of a plate can always increase its stability, but such a 

design will not be economical in respect to the weight of the materials to be used. An 

economical solution is obtained by keeping the thickness of the plate as small as 

possible and increasing the stability by introducing reinforcing stiffeners. 
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It is obvious that reinforcing the plate by transverse stiffeners will have little effect 

on the buckling strength of the plate unless these stiffeners are very closely spaced. 

Therefore introducing one or more longitudinal stiffeners will be more economical. 

These stiffeners not only carry a portion of the compression load but also subdivide the 

plate into small panels, thus increasing considerably the critical stress at which the plate 

will buckle. Figs. 1.1d and 1.1p shows plates that have intermediate longitudinal 

stiffness and Figs. 1.1h and 1.1o shows plates that have edge longitudinal stiffeners.  

 

1.5 Previous Research 

The history of the theory of plate stability under edge compression goes back to 

1891, when Bryan (Bleich, 1952) presented the analysis for a rectangular plate simply 

supported on all edges and acted upon on two opposite sides by a uniformly distributed 

compression in the plane of the plate. Credit for the most extensive treatment of the 

buckling problems of rectangular plates belongs to Timoshenko (1963). Bleich (1952) 

made an attempt to extend the theory of flat-plate stability into the inelastic range. 

Credit for the first extensive analysis of the stability of plate assemblies belong to 

Lundquist, Stowell, and Schuette, who applied the moment distribution method to the 

stability of structures composed of plates  (Bleich, 1952). Three categories of previous 

research will be conducted in this section. These categories are: 

1. Experimental and analytical studies on the effective section concept and to 

investigate local and overall buckling of columns. 

2. Research concerning the interaction between plate elements and local with 

overall buckling analytically. 

3. Research concerned with rectangular plates stiffened longitudinally. 
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Many researchers have investigated the concept of effective width and the 

interaction of local and overall buckling in the postbuckling range. DeWolf, Pekoz, and 

Winter (1974) presented an analytical approach, which accounts for the combined 

effects of local buckling, column buckling, and nonuniform material properties in 

compression members. This research is based on the tangent modulus concept and 

utilizes the effective width concept. A simplification, based on the CRC (Column 

Research Council) column curve, was also given as an approximation for use in routine 

design situations. 

In 1979, Kalyanaraman, Pekoz, and Winter  (1979) confirmed experimentally two 

effective width expressions for the postbuckling range of unstiffened elements. Both the 

tangent modulus and the SSRC (Structural Stability Research Council) methods for 

calculating the flexural buckling strength of columns, when modified to take into 

account the reduction in stiffness as a result of local buckling, can be used to calculate 

the flexural buckling strength of columns with locally buckled elements.  

Usami and Fukumoto (1982) presented an empirical formula based on the AISC 

method and the effective width concept to predict the local and overall interaction-

buckling strength of welded built-up box columns made of high strength steel. 

Furthermore, a discussion of an economical way of proportioning box sections was 

presented.  

Usami (1982) investigated, theoretically, the postbuckling behavior of rectangular 

plates in combined compression and bending. The theoretical results were utilized to 

derive effective width formulas for combined compression and bending. A family of 

postbuckling strength curves, which were calculated from the derived effective width 

formula, for box sections were presented. 
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During the few past decades, attention is focused on the local buckling of plate 

elements and the interaction between plate elements in cross sections, local with overall 

buckling, and their influence on the column behavior and the ultimate load carrying 

capacity. Among the earlier references in the interaction of local and overall buckling in 

the postbuckling range are those by Bijlaard, Fisher, and Graves-Smith (Galambos, 

1998).  

Little (1979) presented a theoretical method, based on the application of average 

stress-strain curves to account for the effect of local buckling and residual stresses on 

the column strength, ultimate strength, and the load-deflection curves for square steel 

box welded columns obtained by integrating the moment-curvature-thrust relations 

along the axis of the column. 

Hancock (1981) proposed a nonlinear finite strip analysis to produce accurate 

solutions for the deflections and stresses in imperfect folded plate assemblies under 

axial compression. The effective flexural rigidity concept of an imperfect thin-walled 

box column subjected to loads greater than the local buckling load was found to agree 

with other research. 

In 1985, Dawe, Elgabry, and Grondin (1985) used an analytical technique for 

predicting the local buckling behavior of hollow structural sections to predict elastic and 

inelastic local bucking capacities of axially loaded hollow structural sections. The 

technique, similar to finite strip-method, is based on the principal of virtual work and 

used a Rayleigh-Ritz solution procedure. 

 

An exact solution of longitudinally or transversely stiffened rectangular flat plates 

acted upon by uniformly distributed stresses on two opposite edges was published by 

Lokshin. Later, Barbre investigated the effect of longitudinal stiffeners in two particular 
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cases, namely, one rib in the middle of the plate, and two ribs dividing the width of the 

plate into equal panels. He gave numerical tables and charts for the design of the 

stiffeners (Bleich, 1952). Recent researches treat this problem in two approaches, the 

first is the equivalent column method, which is concerned with the stiffener and 

adjacent areas of the plate, and the other approach is an extension of the effective width 

concept.  

Desmond, Pekoz, and Winter (1981) investigated experimentally and analytically 

the behavior of rectangular plates with intermediate stiffeners for thin-walled members. 

An approach was presented for predicting effective widths of intermediately stiffened 

compression elements that are either adequately or partially stiffened. In their study, 

recommendations that provide the minimum required stiffener rigidity to support these 

elements adequately were also presented. 

Bernard, Bridge, and Hancock (1993) showed experimentally that the intermediate 

stiffener was found to exert a strong influence on the primary mode of buckling in the 

compressed flanges profiled steel decks loaded in pure flexure. They found that the 

primary mode of buckling depends on the size of the intermediate stiffener. Moreover, 

distortional buckling was associated with small stiffeners and local buckling was 

associated with large stiffeners.   

 

1.6 Objectives and Scope of the Research 

The nature of manufacturing process of square and rectangular steel hollow 

sections requires forming these sections with lower thickness, which may affect their 

structural performance. Also, variations in structural characteristics introduced during 

the forming process of these sections may affect their strength and the behavior of their 

plate elements and, therefore, these matters must be verified.  
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The purpose of this research is to investigate experimentally the behavior of steel 

plate elements of square and rectangular hollow sections that are used in practice. 

A systematic study of postbuckling behavior of the plate elements of the tube 

sections, which are considered thin-walled section, will be conducted in order to verify 

their strength and develop a compact effective section formula takes into account the 

interaction between plate elements based on the results of axial compression tests of 

stub columns. This formula will be used to predict the interaction buckling strength for 

columns affected by local buckling. 

In order to improve the buckling and postbuckling strength, stub columns of the 

same sections will be stiffened by longitudinal stiffeners on their sides. These 

specimens will also be tested under axial compression to study the effects of stiffeners 

on the postbuckling strength of the original sections and the efficiency of the stiffeners. 

Also, effective section formula takes into account the interaction between plate 

elements for this type of sections will be developed, and used to predict the interaction 

buckling strength of the columns affected by local buckling. 

Furthermore, this study aims at determining whether the American Institute of 

Steel Construction Specification AISC is adequate regarding the strength of columns 

composed of sections similar to the test specimens. This will be achieved by a 

comparison between the strength predicted by the specification and the strength 

predicted by this research. 
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                                                                         Chapter 2 

BEHAVIOR OF RECTANGULAR PLATES UNDER  

UNIAXIAL COMPRESSION 

 

 

 

2.1 General 

The analysis of column buckling is relatively simple because bending can be 

assumed to take place in one plane only. By comparison, the buckling of a plate 

involves bending in two planes and therefore is fairly involved. Another significant 

difference between columns and plates is also apparent if one compares their buckling 

characteristics. For a column, buckling terminates the ability of the member to resist 

axial load, and the critical load is thus the failure load of the member, the same, 

however, is not true for plates. These structural elements can, subsequent to reaching 

the critical load, continue to resist increasing axial force, and they do not fail until a 

load considerably in excess of the critical load is reached. The critical load of a plate is 

therefore not its failure load. Instead, one must determine the load-carrying capacity of a 

plate by considering its postbuckling behavior. 
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2.2 Elastic Stability of Rectangular Plates Under Uniaxial 

Compression 

The following is the solution of the stability problem of rectangular plates 

compressed in one direction by a uniformly distributed load in the plane of the plate 

with different boundary conditions at the unloaded edges in the elastic range. 

A flat plate loaded on the two edges parallel to the y-axis by the uniformly 

distributed load, xtσ , where t is the plate thickness and xσ is the normal compression 

stress in x-direction (Fig. 2.1a) will be considered. We assume these edges to be simply 

supported so that the plate can rotate freely about them. Clamping the loaded edges has 

little effect on the critical load for plates with large aspect ratios such as those used in 

customary column sections. The edges parallel to the x-direction, edges a, may be 

supported in various ways (Bleich, 1952): 

Case I: the plate is elastically restrained at the unloaded edges, a. This case 

includes, as limiting cases, simply supported or clamped edges. 

Case II: One of the unloaded edges, a, is elastically restrained and the other is 

free. This case likewise includes the two limiting conditions in which the 

supported edge is free to rotate or is clamped. 

Fig. 2.1b shows typical longitudinal sections of buckled plates, and Fig. 2.1c shows 

cross sections for each case of support.  In plates supported on both edges, Case I, 

buckling occurs in one or more half waves depending upon the aspect ratio a/b in which 

a and b are the length and the width of the plate respectively. In Case II, where one edge 

of the plate is free, the plate will buckle in one half wave when it is free to rotate at the 

supported edge but in one or more half wave if elastically restrained or clamped.  

The solution of buckling problem of plates is based upon the fundamental 

differential equation for the deflection, w, of a thin flat plate under the action of forces 
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in its middle plane. This equation is derived under the assumption that the deflection, w, 

is small compared to the thickness, t, of the plate. The equation reads (Bleich, 1952): 

     02
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in which: 

    E     modulus of elasticity in elastic range. 

    ν     Poisson’s ratio, 0.3 for steel. 

The solution of Eq. 2.1 can be expressed in a general formula for all cases as follows: 
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Where: 

k      buckling stress  coefficient, which will be determined for each case later. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1 Rectangular plate suffers buckling. 
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Equal elastic restrained will be assumed on both unloaded edges, Fig. 2.1c, Case 

I. The coefficient of restraint,ξ  which will be determined next in the next Chapter, is a 

function of the dimensions of the buckling and restraining plates. It may be noted that ξ  

can theoretically be assumed from 0 to ∞ . When ξ =0, the plate is completely fixed at 

the supported edges, and when ξ = ∞ , it is free to rotate about these edges. The general 

expression of the coefficient of buckling, k, for both cases is given as follows: 

22









++
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n
qp

n
k

α

α
                                                                            (2.4) 

Where: 

n     number of waves in longitudinal direction. 

α     aspect ratio a/b. 

a     length of the plate.        

b     width of the plate. 

p and q    Factors depending on the coefficient of restraint ξ . 

For long plates, buckling coefficient, k, approaches the minimum value, which gives the 

minimum buckling stress as follows: 

qpk 2min +=                                                                                      (2.5) 

The factors p and q can be obtained from Fig. 2.2 for Case I and Fig. 2.3   for Case II, 

which are plotted againstξ . Eq. 2.5 is valid for elastic and inelastic buckling (Bleich, 

1952). 

For Case I, if the restraint on the unloaded edges of a plate is unequal, the 

following approximate method has been recommended: 

The method outlined above for equal restraint on both unloaded edges is applied, first 

using the coefficient of restraint 1ξ  of one side to find a plate coefficient k1 from Eq. 2.5 

and then using the other value 2ξ to find a plate coefficient k2. The mean value 
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k=(k1+k2)/2 represents a fairly good approximation of the exact value of k and can be 

introduced into Eq. 2.3 to obtain the critical stress of the plate under consideration.  
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Fig. 2.4 shows the limiting cases for coefficient of buckling, k, where the plate is 

simply supported, ξ = ∞ , or fixed, ξ =0. In this figure two cases of loaded edges are 

depicted, one is for simply supported, and the other for fixed ends. It is shown that the 

differences between the two cases are small, particularly for long plates. 
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Fig. 2.4 Elastic buckling coefficients for limiting cases (Salmon and Johnson, 1996) A
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2.3  Inelastic Buckling of Plates 

2.3.1 Plasticity Reduction Factor 

For plates as well as columns and beams, it is not unusual for the proportional 

limit of the material to be exceeded prior to reaching the critical stress. If this occurs, 

the elastic theory presented in the preceding section must be replaced by an analysis 

capable of dealing with the inelastic behavior. 

Investigation of inelastic plate buckling indicate that Eq. 2.3, the elastic buckling 

relationship, can be extended into the inelastic range, provided that Young’s modulus is 

replaced by a reduced modulus. Thus the inelastic critical stress for plates is usually 

given in the form 

  
22

2

))(1(12 tb

E
kcr
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ηπ
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−
=                                                                         (2.6) 

where η  is a plasticity reduction factor, or ηE  is a reduced modulus. Since inelastic 

behavior always decreases the stiffness of a plate, η <1, the inelastic critical stress given 

by Eq. 2.6 is always less than the corresponding elastic stress given by Eq. 2.3. 

The results obtained from inelastic plate studies indicate that the factor η  is a 

function of the shape of the stress-strain curve, the type of loading, the length to width 

ratio of the plate, and the boundary conditions. If a long rectangular plate is uniaxially 

compressed and simply supported along both edges, Gerard shows the plasticity 

reduction factor is to be as follows (Chajes, 1974): 
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in which Es is the secant modulus and Et   is the tangent modulus of the material. For the 

same plate, if only one edge is simply supported and the other is free, then the factor 

will be as follows: 
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E

Es=η                                                                                                (2.8) 

A relation for η  considerably more suited for design purpose than the foregoing 

ones was derived by Bleich (1952). Using an approximate theory based on the 

assumption of anisotropic behavior of the plate when the critical stress crσ lies above 

the elastic limit, he obtained the following simple expression: 

  
E

Et=η                                                                                             (2.9) 

According to Bleich, for long plates the buckling coefficient, k, becomes independent of 

η . This is important because it permits the use of precalculated values for the 

coefficient, k, which are applicable in the elastic and inelastic ranges of buckling. 

 

2.3.2 Critical Stress in The Inelastic Range  

According to Bleich the reduction factor, η, depends on crσ in the inelastic range, 

which is an unknown quantity at the outset of the computation, and iterative method 

would be necessary to determine crσ . This can be avoided by writing Eq. 2.6 in the 

form: 

22
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π

η

σ

−
=                                                                   (2.10) 

Determining ησ cr from this equation the corresponding value of crσ can be found from 

a precalculated table of the value crσ as a function of ησ cr . Such a table can be 

computed from the 2η -values for the material under consideration. Bleich suggests a 

formula for 2η , which depends upon the yield strength yσ , proportional limit for the 

material pσ , and the average compressive stress cσ (Bleich, 1952). This formula can be 

expressed as follows: 
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2η
ppy

ccy

σσσ

σσσ

)(
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−

−
=                                                                            (2.11) 

This equation is applicable beyond the proportional limit of the material, and valid for 

inelastic buckling of plates and columns. The reduction in the modulus of elasticity in 

the SSRC formula of strength of short columns is based on Eq.2.11 using pσ =0.5 yσ . 

 

2.4  Postbuckling Behavior of Uniaxially Compressed Plates 

 When the magnitude of the critical stress in a plate is reached, slight buckling 

waves will appear very gradually, however the plate will not fail. It will continue to 

carry increasing load, sometimes a large multiple of that which causes the first barely 

perceptible waving, particularly when the width/thickness, b/t, ratio is large. This 

phenomenon is known as postbuckling strength and is of decisive importance for thin-

walled metal structures. 

 Postbuckling strength can be easily understood physically. Fig. 2.5a shows a 

compressed square thin plate buckles into slight half waves at the critical stress. These 

half waves are replaced by a grid model for simplicity. A plate, however, is a two-

dimensional body and the crossties roughly represent its action perpendicular to the 

direction of compression. It is evident that, when the struts start buckling (bending), 

tension and bending are induced in the crossties, which, thereby, counteract further 

buckling of the struts. They do so more effectively for those struts closer to the stiffened 

edges.  Consequently, the grid (plate) is enabled to carry additional load, but it will be 

primarily those portions, which are close to the edges that resist increasing stress. The 

distribution of compressive stresses is, therefore, nonuniform in this postbuckling range, 

Fig. 2.5b. The plate will not be able to carry further additional load and begins to fail 

only when the most highly stressed portions reach the yield strength of the material. It is 
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thus seen that the stresses in the crossties, representing the membrane stress in the 

compressed plate, are the reason for postbuckling strength and for the difference 

between the column and the plate buckling. 
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Fig. 2.5 Postbuckling behavior of a plate 
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2.4.1 Maximum Strength and Effective Width Concept 

The value of the load corresponding to the nonuniform compressive stress 

distribution is more difficult to determine than the buckling strength. Equation of 

critical buckling, Eq. 2.3, is not applicable because it neglects the effect of membrane 

stresses in the middle plane of the plate, which become significant for large deflections. 

For design purposes, it is convenient to replace the area under the curve of 

nonuniform stress distribution by two rectangles of the same maximum stress and the 

same total area, Fig. 2.5b. 

A very important semi-empirical method of estimating the maximum strength of 

plates is the effective width concept. Only a fraction of the width is considered effective 

in resisting the applied compression. In a plate structure, use of the effective width leads 

to an effective cross-section consisting of portions meeting along a junction. It is near 

these junctions that the plates will begin to yield preceding failure. In postbuckling 

range, a load P that the plate carries can be expressed as: 

tbP eeσ=                                                                                         (2.12) 

where: 

eσ       maximum stress at edges, Fig. 2.5b. 

be        effective width. 

t           thickness of plate. 

The edge stress, eσ , continues to increase with the increase in the strain of the plate 

until a limiting value is reached. In the case of flat-yield steel, this limit is yσ  for 

practical purposes or the offset-yielded stress for gradually yielding steel; the ultimate 

load can be written as: 

tbP eyu σ=                                                                                      (2.13) 
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From Fig. 2.5b and equating tbeeσ  to tbavσ , where avσ is the average stress on entire 

width b, the following expression can be obtained: 

b

be

e

av =
σ

σ
                                                                                     (2.14) 

At failure, and by equating tbeyσ  to tbuσ , in which ye σσ = and uav σσ = , Eq.2.14 

becomes: 

b

be

y

u =
σ

σ
                                                                                      (2.15)  

For a plate assembly with unequal dimensions, Eqs.2.14 and 2.15 must be 

modified to include the total effective area, Ae. Therefore, Eq.2.14 becomes: 

 
A

Ae

e

av =
σ

σ
                                                                                   (2.16) 

And Eq.2.15 becomes: 

A

Ae

y

u =
σ

σ
                                                                                     (2.17) 

 

2.4.2 Effect of Imperfections on Plate Behavior 

When testing a plate, it is observed that the magnitude of the out-of-plane 

deflections grows from the beginning of load application. In other words there is no 

load that we can identify as the critical load. This lack of agreement between the 

observed behavior of a real plate and that predicted on the basis of a perfect flat plate is 

of course due to the fact that real plates are not flat prior to loading. Owing to the 

process of manufacture some initial deflections will exist, these will be different in 

magnitude and shape from one plate to another. 

In order to analyze the plate precisely we need to be able to specify the initial 

imperfection but we don’t know these until the plate is manufactured. Therefore, to 
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simplify the analysis, the initial imperfections are chosen to coincide in shape with the 

deflected shape that would occur in a buckled perfect plate. Based on this assumption, 

analysis shows that the magnitude of ultimate strength, as a function of initial 

imperfection of a plate, can be determined from (Walker, 1975): 

2

152.0183.2 







+−+








+−+=

ucr

u

ucr

u

cr

u

cr

y

P

P

P

P

P

P

P

P

δ

ε

δ

ε
                (2.18) 

where: 

Py      crushing load =A yσ . 

A        cross sectional area of a plate  

Pu      ultimate load, load at collapse of plate. 

Pcr      critical buckling load of plate. 

ε         amplitude of the initial imperfection. 

uδ        maximum deflection of plate at collapse. 

But values of initial imperfection will vary according to the plate dimension. We can 

arrange for tε  to be a parameter of the plate geometry. A suitable description is given 

as follows: 









=

cr

y

P

P

t
β

ε
                                                                               (2.19) 

in which β is a constant that can be adjusted to fit experimental results.  

In the next section, it will be seen that the effective width formula resulting from 

tests can reflect the total effect of various imperfections as well as residual stresses.  

 

2.4.3 Effective Width Formulas 

For plates under uniform compression, stiffened along both edges parallel to the 

direction of the applied compression, a compact form for the effective width formula 

can be expressed as follows: 
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e

e

kE
tb

σ
µ=                                                                                 (2.20) 

where  

µ       nondimensional coefficient determined theoretically or from tests. 

eσ       maximum stress at edges, at failure ye σσ = . 

         t         thickness of plate. 

k         buckling stress coefficient. 

 

Karman’s formula: 

Eq. 2.20 was first developed by Karman (Galambos, 1998), based on Eq.2.3, he 

proposed theoretically that:  

e

e

E
tb

σ
9.1=                                                                              (2.21)                                      

in which  k=4.0 and 3.0=ν , and assuming that the two strips along the sides, each on 

the verge of buckling, carry the entire load. 

Combining Eqs. 2.3 and 2.21, the following expression can be obtained: 

 
e

cre

b

b

σ

σ
=             ≤1                                                                  (2.22) 

Therefore, the effective width at the ultimate load is given by: 

y

cre

b

b

σ

σ
=           ≤1                                                                   (2.23)     

Substituting Eq. 2.22 into Eq. 2.15, Karman’s equation gives the theoretical ultimate 

load that the plate can carry as follows: 

ycru σσσ =                                                                              (2.24) 
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Winter’s formula 

As a result of many tests and studies of postbuckling strength, Winter suggested 

another formula for the effective width, which includes a correction coefficient from 

tests and reflecting the total effect of various imperfections (Galambos, 1998). The 

formula, in a similar form of Eq.2.21 in which k=4.0, is: 














−=

b

tEE
tb

ee

e
σσ

415.019.1                                               (2.25) 

or , alternatively, in the form of Eq.2.22, 














−=

e

cr

e

cre

b

b

σ

σ

σ

σ
22.01         ≤1                                          (2.26) 

For the ultimate load, using ye σσ = . Eqs. 2.25 and 2.26 are adopted in the AISI and 

the AISC specifications (Salmon and Johnson, 1996; Galambos, 1998).  

   

Considering that Eqs. 2.21 and 2.25 are appropriate formulas for determining the 

effective design width of stiffened compression elements with k=4.0, generalized 

formulas for different stiffened compression elements with various rotational edge 

restrains which are identical to Eqs. 2.21 and 2.25 can be written as follows (Galambos, 

1998): 

  
e

e

kE
tb

σ
95.0=                                                                          (2.27)                                                                         














−=

b

tkEkE
tb

ee

e
σσ

209.0195.0                                            (2.28) 

For a given value of σy , the limiting ratio of width/thickness, (b/t)lim, in which the plate 

can be considered entirely effective, will be obtained from Eq.2.28 as follows: 
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y

kE

t

b

σ
64.0

lim

≤







                                                                   (2.29) 

Slenderness parameter, λλλλ  

Euler formula, Eq.2.3, for critical stress can be written in the following form: 

2

1

λσ

σ
=

y

cr                                                                                  (2.30) 

where  

Ekt

b y

2

2 )1(12

π

νσ
λ

−
=                                                               (2.31) 

 From Eqs.2.23 and 2.15, Karman’s equation for the ultimate load can be written as 

follows:  

λσ

σ 1
==

b

be

y

u        ≤ 1                                                           (2.32) 

Also, Winter’s equation, Eq.2.26, can be expressed as: 

)
1

22.01(
1

λλ
−=

b

be      ≤1                                                      (2.33) 

Eqs.2.32 and 2.33 as well as Eqs.2.27 and 2.28 can be used for simply supported end 

condition and for other conditions, because the buckling coefficient, k, is taken as a 

variable (Galambos, 1998; Usami and Fukumoto, 1982). 

Furthermore, Eqs. 2.27 and 2.28 can be written for the ultimate load as follows: 

y

e E

b

t
k

b

b

σ
95.0=         ≤1                                                    (2.34) 














−=

b

tE
k

E

b

t
k

b

b

yy

e

σσ
209.0195.0  ≤1                         (2.35) 

If using the following form for the slenderness parameter: 
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Et

b yσ
λ =′                                                                               (2.36) 

Eqs. 2.34and 2.35 can be written as follows: 

 
λσ

σ

′
==

k

b

be

y

u 95.0
                                                               (2.37) 












′
−

′
==

λλσ

σ kk

b

be

y

u 209.0
1

95.0
                                        (2.38) 

 

2.5 Stability of Rectangular Plates with Longitudinal Stiffeners 

The theory of stiffened plates will be used to obtain simple design rules for the 

required rigidity of stiffeners in order that the plate and stiffener combinations will 

develop the specified critical buckling stress. Since the stiffeners carry the same 

compressive stresses as the plate, they may be considered as columns, and thus, the 

question of the stability of the stiffeners themselves, which must be designed with due 

regard to the additional possibility of torsional or local failure should be investigated. In 

this section, the case of a simply supported plate reinforced by one longitudinal stiffener 

on centerline will be studied.  

Fig. 2.6 shows a rectangular thin plate of length a, width b, and thickness t, which 

is reinforced by a longitudinal stiffener on the centerline. The cross-sectional area of the 

stiffener is A, and its moment of inertia is I. It is assumed that the centerline of the 

stiffener lies in the middle plane of the plate, and the moment of inertia, I, therefore 

refers to the axis of the stiffener in this plane. Torsional rigidity of the stiffener is 

regarded as small and will be neglected; only the flexural rigidity of the stiffener 

perpendicular to the plane of the plate is being considered. The plate is loaded by a 

uniformly distributed load xtσ  acting on the edges x=0 and x=a. The stiffener is 
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assumed welded or riveted to the plate and having the same compressive stress xσ  as 

the plate. 

Because of the symmetry of the plate stiffener system, the displacement of the 

buckled system will be one of the following two types: 

1. A symmetric configuration with deflected stiffener, some writers call this 

mode stiffener buckling mode or distortional buckling, Fig. 2.6b. 

2.  An antisymmetric configuration or local buckling of plate where the 

stiffener remains straight and the plate buckles between the stiffener and 

the edges, Fig. 2.6c. 

 

 

 

 

 

 

 

 

 

 2.5.1  Requirements of Stiffener Rigidity 

The antisymmetric displacement form, Fig.2.6c, will occur when the rigidity ratio 

of the stiffener and the plate, γ =EI/Db, is larger than a certain value, oγ . It is important 

to note that the critical stress for antisymmetric buckling, Fig.2.6c, does not depend on 

the rigidity ratio, γ , but on the critical stress for a simply supported plate of width b/2. 

For values of γ below oγ , the symmetric displacement form, Fig. 2.6b, in which the 

a 

b 

tσx 

x 

y 

(a) (c) 

Stiffener 

(b) 

Fig. 2.6 Mode of buckling of thin plate with intermediate stiffener 

b’ 
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stiffener deflects with the plate will occur. At the ratio oγ both configurations are 

equally possible. 

The theoretical rigidity ratio oγ , at which the critical buckling of the assembly is 

initiated by simultaneous symmetric and antisymmetric mode of buckling, can be 

computed approximately from the following formula (Bleich, 1952): 

ααδαγ 4.5)1625.1(4.11 2 −++=o                                   (2.39) 

where 

α       aspect ratio, a/b. 

 δ         A/bt 

                          A        area of cross section of stiffener. 

The maximum value for oγ  can be obtained from the following expression: 

maxoγ =24.4+112δ (1+δ )                                                    (2.40)     

If the rigidity ratio oγ that is obtained from Eq.2.39 is greater than maxoγ , oγ  must be 

replaced by maxoγ . The above formulas are valid for 0 ≤≤ δ 0.2. 

It should be noted that for long plates, the rigidity ratio oγ is independent from the 

aspect ratio, α . The required moment of inertia of the stiffener is: 

oo

bt
I γ

ν )1(12 2

3

−
= =0.092bt

3
oγ                                              (2.41) 

Eq. 2.41 is valid for all kinds of metal in elastic and inelastic ranges (Bleich, 1952). If 

the moment of inertia of the stiffener, I, is larger than the value Io given by Eq. 2.41, 

each panel of the plate will buckle as a simply supported plate at a critical stress which 

is independent of the value of Io. When the stiffener is frequently welded or riveted to 

one side of the plate only, adjacent zones of the plate can be included with the stiffener 

cross section.  
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The case of rectangular plates clamped at both unloaded edges which having one 

stiffener at the center was also investigated by Barber (Bleich, 1952). Fig. 2.7 shows, 

for comparison, the values of maxoγ for plates having simply supported edges and plates 

with two fixed edges. The criteria for stiffener rigidity that will be used in this study 

will be presented in Sec.3.3.2. 

 

 

 

 

 

 

 

 

 

 

 

2.5.2  Buckling Stress Coefficient 

I-Antisymmetric mode of buckling 

In this mode, Fig.2.6c, the moment of inertia of the stiffener, I, is greater than or 

equal to Io which means that the plate is adequately stiffened, and buckles between the 

stiffener and the edges. the coefficient of buckling for this mode can be determined as 

follows (Desmond et al., 1981):   

(kb)as.=(b/b’)
2
kb’=4kb’                                                             (2.42) 

where 

   

0 

0 

50 

0.2 

maxoγ

δ 

Long sides S.S. 

Long sides F.S. 

Fig. 2.7 Maximum rigidity ratio versus δ for long sides simply supported and fixed. 
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 (kb)as.        buckling coefficient which is expressed as  a function of b. 

    b’              b/2, Fig 2.6. 

             kb’            buckling coefficient which is expressed as function of b
’
. 

If we assumed simply supported unloaded edges of the plate, kb=16. 

 

II-Symmetric mode of buckling 

 In this mode, Fig.2.6b, the moment of inertia of the stiffener, I, is greater than or 

equal to Io and the plate is considered partially stiffened. For this case when 0 ≤ I/Io ≤ 1, 

Desmond et al. (1981) suggested the following expression: 

( ) [ ] nsbnsbasbosyb kkkIIk )()()()(
2/1

+−=                              (2.43) 

where 

   (kb)sy      predicted buckling stress coefficient for partially stiffened plates. 

   (kb)as    buckling stresses coefficient for adequately stiffened=16 for simply 

supported unloaded edges. 

   (kb)ns   buckling stress coefficient for plate without stiffeners=4 for simply 

supported unloaded edges. 

Fig. 2.8 shows graphically Eqs.2.42 and 2.43 for symmetric and antisymmetric mode of 

buckling as a function of (I/Io) for simply supported thin plates. 

 

2.5.3 Postbuckling Strength  

Considering plates with longitudinal stiffeners, the effective width concept can be 

extended to this type of plates (Galambos, 1998; Bernard et al., 1993; Desmond et al., 

1981). Therefore, the equations outlined in Sec.2.4 can be used to obtain their ultimate 

strength in the postbuckling range. 
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Fig. 2.8 Minimum critical buckling coefficient for long and thin simply 

supported plate with intermediate stiffener. 
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                                                                           Chapter 3 

BUCKLING INTERACTION 

 

 

 

 

3.1 Interaction Between Plate Elements 

In the preceding chapter, attention has been confined to the behavior of a single 

plate element supported along one or both of its longitudinal edges. The structural steel 

sections employed in practice, Fig. 1.1, are composed of plate elements arranged in a 

variety of configurations. It is clear that the behavior of an assembly of plates would be 

governed by an interaction between the plate components. In this section the mechanics 

of such an interaction is discussed briefly. 

  

3.1.1 Buckling of a Plate Assembly  

A prismatic plate structure is often viewed simply as a group of stiffened and 

unstiffened plate elements. The former are plate elements supported on both 

longitudinal edges by virtue of their connection to adjacent elements, Case I, while the 

later are those supported only along one of their longitudinal edges, Case II (Fig. 2.2). 

Thus the critical local buckling stress of plate elements depends upon the rotational 

restrains at the unloaded edges of the plate assembly. 
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3.1.1.1 Buckling Modes of a Plate Assembly 

Unlike a single plate element supported along the unloaded edges, a plate 

assembly can buckle in one of several possible modes. For the case of axial 

compression, the buckling mode can take one of the following forms (Galambos, 1998): 

• Mode I. This is the purely local buckling mode discussed earlier in Sec. 2.2. The 

mode involves out-of-plane deformation of the component plates with the 

junction remaining essentially straight and it has a wavelength of the same order 

of magnitude as the width of the plate elements. 

• Mode II. The buckling process may involve in-plane bending of one or more of 

the constituent plates as well as out-of-plane bending of all the elements, as in a 

purely local mode. Such buckling mode is referred to as a stiffener buckling 

mode, local torsional mode, or orthotropic mode, depending on the context, Sec. 

2.5. The associated wavelength is considerably greater than that of mode I, but 

there is a half-wavelength at which the critical stress is a minimum. 

• Mode III. The plate structure may buckle as a column in flexural or flexural-

torsional mode with or without interaction of local buckling. Flexural buckling 

mode will be discussed in this chapter. 

 

3.1.1.2 Restraint Coefficient, ξ , of Plate Elements of Box Section 

In the study of rectangular plates in Section 2.2, a coefficient of restraint, ξ , was 

introduced, and it is now the time to show how this coefficient can be determined in the 

case of plate assembly in rectangular hollow sections. Bending and twisting of the 

restraining plates, thicker plates, in Fig. 3.1 is determined not only by the effect of the 

elastic interaction between the web plates and the restraining elements but also by the 

longitudinal compressive forces acting on the restraining plates. The heavier the 
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restraining plates, the smaller will be the effect of the compressive stresses. This effect 

takes on a practical significance when the width to thickness ratios, b/t and c/tc, 

approach the same value (Fig. 3.1c). In the limiting case, when both plates buckle 

simultaneously, there is no restraint effect and each element behaves as a plate having 

simply supported unloaded edges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The following solution for the restrained coefficient is based upon these 

assumptions (Bleich, 1952): 

1. No overall buckling of entire plate assembly takes place prior to local instability 

in the plates. 

2. The edges where the plates join remain straight and do not distort before local 

failure takes place. 

The coefficient of restraint of box section can be expressed as: 

Fig. 3.1 Interaction of plate elements of box section. 

b 

c 

t 

tc 

(b) 

σcr 

(a) 

(c) (d) 

Simply supports Intermediate case Fixed supports 
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)(1

)(
2222

1

3

3

btct

bc

t

t

cc −
=

ρ
ξ                                                                 (3.1) 

where: 

t      thickness of considered plate. 

b     width of considered plate     

tc     thickness of thicker plate. 

c     width of thicker plate. 

1ρ    factor determined from Fig. 3.2. 

This equation applies when (tc/tcb) ≤ 1. All terms of Eq. 3.1 are shown in Fig. 3.1, 

except 1ρ  which can be determined from Fig. 3.2 as a function of ωηc  in which ω  

is the half wavelength which is determined from: 

ηψω b=                                                                                 (3.2) 

where: 

ψ      coefficient determined from Table 3.1. 

η        plasticity reduction factor, EEt . 

Table 3.1 shows the numerical limiting values of factor ψ for the computation of the 

half wavelength, ω , for elastic and inelastic buckling of plates. To obtain ω, for 

intermediate cases, trail and error method can be used together with Table 3.1 as a 

guide. The numerical values in Table 3.1 apply to long plates only. 

 Computing, in any given case, the value of ξ  with the aid of the diagram for 1ρ  

in Fig. 3.2, the values of the parameters p and q can be evaluated from Figs. 2.2 and 2.3. 

This permits computation of the buckling coefficient, k, from Eq. 2.5, which is required 

to determine crσ  from Eq. 2.3. For inelastic buckling, EEt=2η  <1.0,this procedure 

must be repeated and needs more than one iteration. 
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 In the case of box section with longitudinal stiffeners on all sides, Eq. 2.42 can 

be used to determine the buckling coefficient of the section for a plate adequately 

stiffened, because the variation in restraint coefficient is small and will be neglected. 

Fig. 3.3 shows results of the application of the method outlined above for 

buckling coefficient of box-section for various dimensions. Buckling coefficients for the 

interacted plate elements are utilized for obtaining the entire effective section in 

postbuckling range (Batista, 1987). To obtain the critical buckling for a tube section 

from Eq. 2.3, the largest width/thickness ratio for the side that induces the minimum σcr 

must be used. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 Values of coefficient ψ  of Eq. 3.2 (Bleich, 1952): 

Supports 

Conditions 

Both edges 

simply 

supported 

One edge 

simply 

supported, the 

other fixed 

Both edges 

fixed 

One edge 

simply 

supported, the 

other free 

One edges 

fixed, the 

other free 

ψ  1.000 0.800 0.688 * 1.680 

* ω  is always equal to the length, a, of the plate. 

0 

0 

1ρ  

ωηc  

2.5 

0.45 

Fig. 3.2 Values of 1ρ  

0.5 1.0 1.5

0 

2.0
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0.30 
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Fig. 3.3 Buckling coefficient, k, for box section (Galambos, 1998) 

k 

Side b buckles first 
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3.2 Interaction Between Local and Overall Buckling 

The behavior of a column that exhibited local and overall buckling is very 

complex. The main difficulty lies in the non-linear behavior of thin-walled column, 

which results from the interaction of several instability modes; column flexural 

buckling, plate buckling, and flexural-torsional buckling.  

There are two methods for analyzing compressed thin-walled members. One is the 

effective section method (DeWolf et al., 1974, and Kalyanaraman et al., 1977) in which 

the local instability of a column is treated approximately by reducing the whole section 

to an effective section. The other is a numerical method, such as the finite element 

method and the finite strip method (Hancock, 1981). To design compressed columns, 

the effective width method is the basis of the prevailing specifications, the AISC and 

AISI (AISC, 1993; AISI, 1980), in which the strength of a thin-walled member is 

calculated by combining the effective area and the overall stability equations of the 

member. 

 

3.2.1 Failure Modes of Steel Columns 

A concentrically thin-walled compressed section, such as box section, which is 

subjected neither to torsional-flexural nor to torsional buckling and for which local plate 

buckling occurs prior to material yielding, fails in one of the following patterns: 

1. For small slenderness ratios, such as the stub columns of this study, local plate 

bucking occurs followed by the development of postbuckling strength as the 

load is increased with failure occurring when the compressive strength of the 

component plates is reached.  

2. For moderate slenderness ratios, local plate buckling occurs followed by the 

development of postbuckling strength, with failure precipitated by overall 
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flexural column buckling. In this pattern, interaction between local and overall 

buckling occurs and causes a reduction in the strength of the column. 

3. For large slenderness ratios, failure occurs by overall buckling without local 

plate buckling. 

 

3.2.2   Prediction of Column Strength by Effective Section Concept 

 

3.2.2.1 Modified Tangent Modulus Method 

  This concept is a semi-empirical approach and is applied to a wide variety of 

column shapes, with a broad range of postbuckling and overall column buckling 

strength and to account for elastic and inelastic effects in the plates and columns 

(DeWolf et al., 1974). 

 The bifurcation stress of a column is given by the generally accepted Engesser-

Shanley tangent modulus equation: 

2

2

)/( rKL

Et

CR

π
σ =                                                                           (3.3) 

in which: 

Et      tangent modulus of elasticity.  

L       column length. 

r       radius of gyration. 

K       effective length factor. 

Eq. 3.3 is used as the basis for determining the stress at which overall buckling and thus 

column failure occurs. Eq. 3.3 can be written as: 

ALK

IEt

CR 22

2π
σ =                                                                            (3.4) 
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If the cross section is divided into separated components to allow for the inclusion of 

cold-formed effects at corners, Eq.3.4 can be written as:  

ALK

IE
j

i

iti

CR 22

1

2∑
==

π

σ                                                                    (3.5) 

in which   

           CRσ      the average stress on the column cross  section at buckling. 

            j          the total number of components the cross section is divided into. 

           Eti         the tangent modulus of the i
th

 component. 

            Ii       moment of inertia of i
th 

component 
 
about the axis of overall buckling.   

Provided that local buckling does not occur, the full cross section resists overall 

flexural buckling. However, if local buckling occurs in any of the plate elements, the 

longitudinal stiffness of those elements is reduced. This effect may be expressed by 

reducing the full column cross section to a smaller effective cross section. 

 Fig. 3.4 shows the compressive stress distribution on box section, with and 

without stiffeners, and the effective sections. 

 

 

 

 

 

 

  

 

 

 

Fig. 3.4 Compression stress distribution and effective section 

  

  

Effective section 

(hatched areas) 

(a) Unstiffened box-section 

 

Effective section 

(hatched areas) 
  

 

 

(b) Box section with stiffeners 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 41 

The effective areas and the effective moments of inertia will be used in Eq. 3.5 to 

account for local buckling in determining the ultimate column strength. Eq. 3.5, written 

in terms of the effective section properties, gives the stress at which overall buckling, 

and thus column failure, occurs. Thus; 

e

j

i

eiti

e
ALK

IE

22

1

,

2∑
==

π

σ                                                                    (3.6) 

in which: 

eσ        average stress on the effective section. 

Ii,e      moment of inertia of the effective portion of the i
th 

element about the 

axis of overall buckling. 

Ae         the sum of the effective areas of those elements. 

If the material stress-strain properties are uniform throughout the section, the 

assumed stress distribution on the effective section is uniform and equal to the edge 

stress for the flat plate elements. Otherwise, the stress for each element is obtained from 

the material stress-strain curve for that element using the strain obtained from the 

average stress-strain curve of a stub column for a particular value of σe. 

Having determined, in this manner, σe from Eq. 3.6 the total column load is: 

ee AP σ=                                                                                (3.7) 

This procedure gives the maximum strength of a column subjected to combined overall 

and local buckling with additional consideration of nonuniform material properties.  

The solution of Eq. 3.6 when the cross section is not entirely elastic or not fully 

effective requires iteration, because the tangent modulus and the effective areas are 

dependent on the stress, which in turn, is dependent on the tangent modulus and the 

effective areas. 
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To facilitate the solution, Eq. 3.6 is written in terms of the length rather than the 

stress, i.e.: 

ee

j

i

eiti

AK

IE

L
2

1

,

2

σ

π ∑
==                                                                   (3.8) 

 

3.2.2.2 Modified Structural Stability Research Council Method  

The SSRC-Column Strength equations are adopted in the AISC-ASD 

Specifications. The equations   are based on the tangent modulus theory. However, the 

AISC-LRFD Specifications equations are based on the maximum strength of the 

column and are identical to SSRC Curve 2P (Galambos, 1998). The procedure and the 

equations presented in this section will be used to predict the interaction buckling 

strength of columns.  

ASD equations: 

The average stress on the total section is: 

ee

e

av Q
A

A

A

P
σσσ ===                                                       (3.9) 

where 

    Q       strength reduction factor. 

The stress on the effective section of a column, σe, at failure can be written as follows: 
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                     (3.10) 

and 
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σ
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                      (3.11) 

where 
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e

e

E

r

L

σ

π 2

=













        

and 

  eee AIr =  

To obtain the column strength, Eqs. 3.10 and 3.11 will be written in terms of the column 

length, L, and will be given as: 

)(
2

ey

y

e E
r

L σσ
σ

π
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                       ( 3.12) 

e

eEr
L

σ

π 22
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y

e

E

r

L

σ

π 22
≥














                     (3.13) 

LRFD equations: 

The previous procedure in ASD can be used for LRFD as follows: 

( )
ye

ec σσ λ )( 2

658.0=           when   ( ) 5.1≤
ecλ                                   (3.14) 

and 

y

ec

e σ
λ

σ 







=

)(

877.0
2

                  when  ( ) 5.1>
ecλ                               (3.15) 

where 

Er

L y

e

ec 2
)(

π

σ
λ 








=    

To obtain the column strength, Eqs. 3.14 and 3.15 will be written in terms of the column 

length, L, and will be given as: 













 −
=

658.0ln

)ln(ln22
ye

y

eEr
L

σσ

σ

π
                                                      (3.16) 









=

e

eEr
L

σ

π 22877.0
                                                                    (3.17) 
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3.2.2.3 Effective Area, Ae, and Effective Moment of Inertia, Ie: 

Expressions presented in this section for effective area and effective moment of 

inertia are applicable for tube with and without stiffeners because only the tube section 

is involved for both cases. 

I-Square section 

 Fig. 3.5 shows description for the effective cross section. The effective area and the 

effective moment of inertia can be expressed as: 

       Ae=2Bet+2(Be-2t) t                                                                                            (3.18) 
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−+=

2323

242
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12

)2(
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2212
2

tBB
tBt

tBttB
tB

tB
I e

e

e

e

e

e    (3.19)  

where   

Be       the effective width including the thickness of plate, tbB ee += . 

II-Rectangular section 

The case that will be considered herein is when the ratio of C/t of the short sides is 

less than the limiting value in which short sides will be effective until failure, because 

the tested rectangular section within this limit (Fig.3.6). Based on the above assumption 

the effective width can be obtained using the effective area, Ae, as follows: 

                                  Ae=2Bet+2(C-2t) t                                                                (3.20)                             

Be=[Ae-2 (C-2t) t]/2t                                                              (3.21) 

The moment of inertia is taken about the minor axis and can be obtained as follows:  











 −
+








−+=

12

)2(

2212
2

323
tCttC

tB
tB

I e

e

e                              (3.22) 
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3.3 Specifications Requirements 

Two schemes for dealing with local buckling are generally used. The first, which 

is more common in Europe, aims at preventing plate buckling at any stress less than the 

computed critical stress of entire column. The second, prevailing in other countries such 

as U.S.A. (the AISC specifications), has the purpose of preventing local plate buckling 

at any stress less than the yield point, regardless of the computed critical stress of the 

entire column. Nevertheless, these specifications allow using thin plate elements in 

compression members with additional provisions.  

The practice in light-gage specifications, for example the AISI, is to use thin 

plates in structural elements. To use them to advantage, it is necessary to permit local 

plate buckling before failure, in which event postbuckling strength may be recognized, 

provided that it is accompanied by a suitable reduction in the effective section.  

 

3.3.1 AISC Provisions for Plate Elements 

In the AISC specifications, (AISC, 1980; AISC, 1993), plates supported on both 

unloaded edges are called stiffened element, such as flanges of box-section. Also, for 

Fig. 3.6 Effective area of 

rectangular section. 

  

B 

C 

Be/2 Be/2 

t 

Fig. 3.5 Effective area of 

square section. 
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plates supported on only one unloaded edge are called unstiffened elements, such as 

flanges of I-section. 

 

3.3.1.1 Width/Thickness Limits, λλλλr 

Design limits are generally simplified to insure reaching the yield strength, Fy, in 

compression elements without local buckling, even though the slenderness ratio of a 

column may prevent the element from reaching this stress.  

ASD Specifications 

The width/thickness, b/t, ratios to prevent local buckling until the yield stress is 

reached are the noncompact limits in the AISC (AISC, 1980). Stiffened or unstiffened 

elements subjected to axial compression, or to uniform compression due to bending as 

in the case of the flange in a flexural member, shall be considered as fully effective 

when the ratio of width to thickness is not greater than that given in Section 1-9 (AISC, 

1980). The following cases are of special concern: 

• Flanges of square and rectangular box-section, stiffened element, of uniform 

thickness: 

yF

625
                                                                                     (3.23) 

• Plates projecting, unstiffened element, from compression members: 

yF

250
                                                                                     (3.24) 

where Fy  is the yield stress in MPa. 

LRFD Specifications 

Steel sections are classified as compact, noncompact, or slender-element sections 

(AISC, 1993). For a section to be qualified as compact; its flanges must be continuously 
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connected to the web or webs and the width/thickness ratios of its compression elements 

must not exceed the limiting width/thickness ratio, λp, from Table B5.1 (AISC, 1993). If 

the width/thickness ratio of one or more compression elements exceeds  λp, but dose not 

exceed rλ , the section is noncompact. If the width/thickness ratio of any element 

exceeds rλ from Table B5.1, the section is referred to as slender-element compression 

section. The limiting width/thickness ratio, rλ , for noncompact compression elements 

in the LRFD specifications (AISC, 1993), for the previous cases are similar to the ASD 

specifications. 

 

3.3.1.2 Provisions to Account for Buckling and Postbuckling Strength of Plate 

Elements 

For many years the AISC specifications have permitted that the limiting values, 

which are presented in the previous section, to be exceeded, provided that stress 

computations were based on specified effective width and specified stress. The 

specifications require the effective width to be determined for plates supported on both 

unloaded edges because of the high postbuckling strength of stiffened plate. For a plate 

supported only along one unloaded edge, the postbuckling strength is smaller and its 

value is not much above the incipient buckling load as well as it is accompanied by 

relatively large wave(s) distortions. Thus, the specifications use a reduced stress for 

unstiffened plates. 

a) Effect on Overall Column Strength 

For design, it is desired to use gross section properties; thus for stiffened elements 

(AISC, 1980; AISC, 1993): 

AfQP an max=                                                                         (3.25) 

where 
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 Qa       strength reduction factor, Ae/A 

 Pn        nominal strength. 

 Ae       effective area. 

                         A        gross area. 

                         fmax     maximum stress at unloaded edges. 

And for unstiffened elements 

Pn=QsfmaxA                                                                               (3.26) 

where 

Qs= fav/fmax 

in which 

fav   average stress 

Factors Qa and Qs may be thought of as shape factors, or form factors. For a 

compression system composed of both stiffened and unstiffened elements: 

AfQPn max=                                                                  (3.27) 

where  Q=QaQs. 

ASD Specifications 

For the basic SSRC parabola used in AISC, section C5 (AISC, 1980). The 

following formulas are adopted without a factor of safety. For short columns, the 

strength of the column, Fcr , becomes: 

For 
r

KL
≤ cC ′  




















−=

2

24
1

r

KL

E

QF
QFF

y

ycr
π

                                               (3.28) 

where     

                                  
y

c
QF

E
C

22π
=′                                                                        (3.29) 
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LRFD specifications 

For the equations used in the LRFD Appendix E3, the slenderness parameter for a 

column, cλ , will become Qcλ  and the short column equation becomes as follows: 

For Qcλ ≤ 1.5 

( ) y

Q

cr QFF C
2

658.0
λ=                                                              (3.30) 

where  

E

F

r

KL y

c 2π
λ =                                                                  (3.31) 

Whenever Qcλ > 1.5 in the LRFD and 
r

KL
> cC ′  in the ASD, the effect of local 

buckling on overall column strength is negligible; thus, for slender columns the Euler 

equation is the basis of strength. 

b) Form Factor Qs for Unstiffened Elements 

Local buckling of an unstiffened element will reduce the efficiency of the cross-

section only when Fcr.plate for the plate element is less than Fcr.column. A full advantage is 

not taken of the serviceability equation regarding waviness. Instead, the stresses taken at 

a value between the critical stress and the postbuckling strength. 

ASD-Section C2 and LRFD-Appendix B5.3a give similar stress reduction 

equations for unstiffened flanges, in which width/thickness ratios exceed the applicable 

limit given in Sec.3.3.1.1. The design strength of axially loaded compression members 

shall be modified by the appropriate reduction factor Q, as provided in the previous 

section. 

• For plates projecting from compression members: 

ys FtbQ )/(00166.0415.1 −=                                            (3.32)               

when  
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yF

249
 < 

t

b
 <

yF

462
                                                                (3.33)   

or 

2)/(

137800

tbF
Q

y

s =                                                                       (3.34) 

when 

yFt

b 462
≥                                                                                (3.35) 

where Fy in MPa , b and t in mm. 

 

c) Form Factor Qa for Stiffened Elements 

The concept of effective width is used to account for the strength of stiffened 

elements under compressive stress. The AISC specifications (AISC, 1980; AISC, 1993) 

use the effective width formula developed by Winter, Eq. 2.25 in Sec.2.4.3. When the 

width/thickness ratio of uniformly compressed stiffened elements exceeds the limit 

values given in Sec.3.3.1.1, reduced effective width shall be used in computing the 

design properties of the section containing the element.  

The ASD-Section C3 and LRFD-Appendix B5.3b give similar effective width 

equations. The following formulas are presented (without factor of safety) as follows: 

• For flanges of square and rectangular box-sections: 












−=

ftbf

t
be

)/(

170
1

856
                                                       (3.36) 

 when 

ft

b 625
≥                                                                                  (3.37) 

• For other uniformly compressed elements: 
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−=

ftbf

t
be

)/(

150
1

856
                                                      (3.38) 

when 

ft

b 664
≥                                                                                 (3.39) 

where 

b   actual width of a stiffened compression element. 

be  reduced effective width.  

t    element thickness. 

and Fy in MPa , b and t in mm. 

In the previous equations, f is the computed elastic compressive stress in the stiffened 

elements, based on the design properties. If unstiffened elements are included in the 

total cross section, f for the stiffened element must be taken such that the maximum 

compressive stress in the unstiffened element does not exceed Fcr. For stiffened 

element, Qa= Ae/A  as defined previously in Sec.3.3.1.2 (a). 

 

As mentioned before, Eq.3.36 is adopted from Winter’s equation using a value of 

4.0 for the buckling coefficient and thus the effective cross-sectional area, Ae, is 

determined by the sum of the computed effective widths of all the plate components of 

the section using Eq.3.36 independently. Although this procedure may be true for 

square sections, it is unreasonable for rectangular sections, which means no interaction 

between plate elements in rectangular sections. In contrast, the proposed equation of 

effective section in this study (Sec.5.4) is concerned with the interaction between the 

plate elements for rectangular sections and yields the entire effective section directly. 
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3.3.2  AISI Recommendation for Stiffeners Rigidity 

There are no provisions in the AISC specifications concerning the minimum 

dimensions of longitudinal stiffeners. The formula that is adopted in the AISI 

specifications, which is originally developed by Timoshenko, can be used to obtain the 

limiting moment of inertia for intermediate stiffener, Iso, to insure adequate stiffening 

and to obtain the buckling coefficient in Eq. 2.43. This formula can be expressed as 

follows (AISI, 1980): 

( ))/27600()/(83.12 24

yso FtbtI −′=        mm
4
                   (3.40) 

where    

Iso     minimum moment of inertia of stiffener about its own centrodial axis 

parallel to the stiffened element and not less than 9.2t
4
. 

     b’        sub-plate width =b/2 when the stiffener at the centerline of plate. 

t         thickness of plate. 

Eq. 3.40 gives the necessary dimensions to equate the critical buckling stress of plates 

stiffened by intermediate stiffeners to that of identical plates stiffened by webs along 

both edges (Winter, 1980). However, Desmond (1981) reported that stiffeners provided 

according to Eq. 3.40 are capable of supporting loads even in the postbuckling range. 

The value of Iso from Eq. 3.40 will be used in this study instead of Io presented in 

Sec.2.5.1 to obtain coefficient of buckling for sections with longitudinal stiffeners. 
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Chapter 4 

DETAILS OF TESTS 

 

 

 

This chapter describes the test program of this study. Thirty-six stub columns of 

square and rectangular hollow section were tested to failure under uniaxial compression. 

All details of the testing program will be presented. 

 

4.1 Test Specimens 

The structural hollow steel tubes tested in this investigation are classified as cold-

formed sections. More details on the fabricating process of this type of sections can be 

found in a study presented by Hancock et al. (1987). Two different sections were 

prepared and tested, ordinary tubes (unstiffened tubes), and tubes reinforced by 

longitudinal stiffeners on all sides (stiffened tubes).  

The lengths of specimens were chosen to be sufficiently short to prevent overall 

buckling but long enough to permit local bucking of the individual component plates. 

The corners radii of sections were considerably small, therefore, their effects were 

neglected and the corners of the sections were treated as right-angle corners. 

Dimensions of the specimens are shown in Figs. 4.1 and 4.2 as well as in Tables 4.1 and 
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4.2. In these Tables, “S”, “R”, and “ST” refer to square tube, rectangular tube, and 

stiffener respectively.  

 

4.1.1 Unstiffened Tubes 

The total number of this type is 12 specimens. Two specimens, A and B, for each 

cross section were tested to assure the precision of test results. The range of slenderness 

ratio, b/t, for plate elements was from 65.67 to 31.26 as shown in Fig. 4.1 and Table 4.1.   

 

4.1.2 Stiffened Tubes 

The total number of this type is 24 specimens divided into two groups. In group I, 

small stiffeners were used compared to the sectional area of the specimens whereas in 

group II, relatively large stiffeners were used. Two specimens, A and B, for each cross 

section were tested to assure the precision of test results. The description of these 

specimens is shown in Fig. 4.2 and Table 4.2.  

Stiffeners 

The dimensions of stiffeners were chosen such that local buckling of stiffeners 

themselves is prevented. The reason for such choice is that; if local buckling of the 

stiffener is allowed, the problem will be more complicated and other interaction 

between local buckling of the stiffener and local buckling of the tube flange must be 

considered. Furthermore, the stiffeners dimensions were chosen so that their moments 

of inertia about their center are above and below values given by AISI specifications, in 

order to allow for distortions of all modes. Three types of stiffeners were used (ST1, 

ST2, and ST3); dimensions of these stiffeners are shown in Fig. 4.2 and Table 4.2 as 

well as in Table 4.3. The largest stiffener ST3 was placed on the long side of 

rectangular tubes of group II. 
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  Stiffeners were attached to the tubes by welds on all sides. Since the sections are 

considered as thin-walled, welding process may cause considerable distortion in the 

cross section due to shrinkage. In order to minimize such undesired distortions, 

intermittent weld with minimum size and small length (about 70mm) was used on 

opposite side of the stiffeners.  

Stiffeners were used on short sides of rectangular tubes to assure that failure will 

first occurs at the long sides, and also to keep the restraint at corners as in the corner of 

the unstiffened tube sections.  
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Fig. 4.2 Description of stiffened tube. 
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Fig.4.1  Description of unstiffened tube. 

Intermittent weld 

l 

l 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

Table 4.1 Sectional properties of unstiffened tube Sections 

Specimen B    mm C    mm t      mm b    mm c     mm l  mm A   mm
2
 I   mm

4
 r   mm l/r b/t c/b l/b 

S1 100 100 1.5 98.5 98.5 500 591 955893 40.22 12.43 65.67 1 5.08 

S2 100 100 2.1 97.9 97.9 500 822.36 1314244 39.98 12.51 46.62 1 5.11 

S3 100 100 2.5 97.5 97.5 500 975 1545781 39.82 12.56 39.00 1 5.13 

S4 100 100 3.1 96.9 96.9 500 1201.56 1882288 39.58 12.63 31.26 1 5.16 

R1 150 90 2.9 147.1 87.1 550 1358.36 1939179 37.78 14.56 50.72 0.59 3.74 

R2 200 100 4.9 195.1 95.1 600 2843.96 5034814 42.08 14.26 39.82 0.49 3.08 

 

 

 

Table 4.2 Sectional properties of stiffened tube Sections 

Group Specimens B    mm C    mm t      mm b    mm c     mm bs    mm ts     mm b's   mm  t's   mm  l  mm Astiff/Atube Is/Iso 

S1-ST1 100 100 1.5 98.5 98.5 11.8 3.7 11.8 3.7 500 0.30 0.87 

S2-ST1 100 100 2.1 97.9 97.9 11.8 3.7 11.8 3.7 500 0.21 0.33 

S3-ST1 100 100 2.5 97.5 97.5 11.8 3.7 11.8 3.7 500 0.18 0.20 

S4-ST1 100 100 3.1 96.9 96.9 11.8 3.7 11.8 3.7 500 0.15 0.11 

R1-ST2 150 90 2.9 147.1 87.1 30 3.2 30 3.2 550 0.28 1.16 

Group I 

R2-ST2 200 100 4.9 195.1 95.1 30 3.2 30 3.2 600 0.14 0.19 

S1-ST2 100 100 1.5 98.5 98.5 30 3.2 30 3.2 500 0.65 12.41 

S2-ST2 100 100 2.1 97.9 97.9 30 3.2 30 3.2 500 0.47 4.68 

S3-ST2 100 100 2.5 97.5 97.5 30 3.2 30 3.2 500 0.39 2.87 

S4-ST2 100 100 3.1 96.9 96.9 30 3.2 30 3.2 500 0.32 1.63 

R1-ST2,3 150 90 2.9 147.1 87.1 40 5.2 30 3.2 550 0.45 4.47 

Group II 

R2-ST2,3 200 100 4.9 195.1 95.1 40 5.2 30 3.2 600 0.21 0.72 

“S”, “R”, and “ST” refer to square tube, rectangular tube, and stiffener respectively. 
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4.1.3 Mechanical Properties of Steel 

Tensile test specimens were cut by electrical saw from the original members. Two 

tensile specimens for each type were tested and the average yield strength was used. For 

gradually yielding steel, yield strength at an offset strain of 0.2% was used. The length 

of these specimens was 600mm and the width was nearly 50mm.  The average value of 

the modulus of elasticity in the elastic range for steel, E (estimated from test) is 200 

GPa. Table 4.3 shows the result of tensile tests. 

 

Table 4.3 Yield Stress of tested specimens. 

Specimen 

 

Dimension of 

Section 
mm 

Yield Stress 

σσσσy   
 MPa 

S1 100x100x1.5 281 

S2 100x100x2.1 364 

S3 100x100x2.5 376 

S4 100x100x3.1 381 

R1 150x90x2.9 404 

R2 200x100x4.9 453 

ST1 11.8x3.7 333 

ST2 30x3.2 330 

ST3 40x5.2 325 

 

 

4.2  Test Rig 

All tests were carried out in the Laboratory of Structures at Jordan University of 

Science and Technology. The stub columns were tested by incremental monotonic 

loading in a 2000 kN capacity M1000/RD universal testing machine from DARTIC 

Limited. A control and measurement cell attached to the testing machine capable of 

providing data about load, displacement, and control mode was used to collect the 

experimental data. Computer software was incorporated to read and store all 

measurements including strain gauges and LVDTs (Linear Variable Displacement 
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Transducers) readings. General view of the testing machine and the control cell is 

shown in Fig.4.3.  

The yield stress of tensile test specimens was obtained by using 1200 kN capacity 

M2501 servo-hydraulic universal testing machine.  

 

 

 

 

 

 4.3  Instrumentation 

The stub column specimens were instrumented to measure loads, vertical 

displacement, deflections, and strains. 

 

Fig.4.3 General view for the Testing Machine. 
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4.3.1   Load and Vertical Displacement Measurements 

The applied load and the corresponding vertical displacement were given directly 

by the data recorder of the control cell. Moreover, the applied load was also given as an 

output of the computer program together with other measurements. 

 

4.3.2 Strain Measurements 

Six specimens from group I were chosen and tested with strain measurements. 

The strains were measured by electrical strain gauges, PLS-10-11, with 10mm gauge 

length, 2.01 gauge factor, and 120±0.3Ω gauge resistance. Specimens S3-ST1 (A) and 

R2-ST2 (B) were tested with 4 strain gauges, whereas specimens S1-ST1 (A), S2-ST1 

(B), S4-ST1 (A), and R1-ST2 (B) were tested with 3 strain gauges. All strain gauges 

were placed at midheight of the specimens and distributed at corners and at the 

stiffener-plate junctions. Two strain gauges were also placed on stiffeners.  

 

4.4 Experimental Procedure 

The stub column specimens were tested under a fixed condition. The load was 

applied to the specimens by rigid end plates, and increased gradually throughout the test 

until failure.  

In order to obtain reliable results and obvious loading history, two control modes 

were used. Up to about 80% of the estimated ultimate load of each specimen, load 

control mode was used. For the remaining period of the test, displacement control mode 

was used. 

 Two rates of loading were used in the load control mode, 1.0 kN/sec and 0.5 

kN/sec, depending upon the predicted strength of the specimen. The rate of 
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displacement in the displacement control mode was 0.01mm/sec for all specimens. 

Fig.4.4 shows test set-up and Figs.4.5 and 4.6 show specimens under test. 

 

 

 

 

 

 

Fig.4.4 Test set-up 

Fig.4.5 Specimen without stiffeners under test 
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Fig.4.6 Specimen with stiffeners under test 
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Chapter 5 

RESULTS AND DISCUSSION 

 

 

In this chapter the behavior, the deformations, and the postbuckling strength of the 

tested stub columns will be presented and discussed. Furthermore, analytical 

manipulation of the experimental data will be conducted in order to formulate 

expressions for unstiffened and stiffened tubes, which predict the postbuckling strength 

as effective section formulas. These formulas will then be used to predict the interaction 

buckling of columns. 

 

5.1 Behavior of tested stub columns 

 

5.1.1 Unstiffened Square and Rectangular Tubes 

In general, the stub columns exhibited a crippling failure. A plastic mechanism 

developed in the plate elements and the corners tended to crumple. The plastic zones 

were observed at the middle part for some stub columns and at the ends for other 

specimens. 

The location of failure zones (severe distortions) depends on the location of weak 

points, initial imperfections, and the elastic buckles formed during the elastic loading 

range. Cutting the specimen from the original member may cause some initial 
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imperfection, which may be responsible for developing some plastic mechanism zones 

at the ends of the specimens. The main characteristic of failure was the shape of 

distortion in which two opposite sides deflected outward and the other two sides 

deflected inward. Figs.5.1 and 5.2 show the specimens after failure. 

 

5.1.2 Stiffened Square and Rectangular Tubes 

The stiffened specimens behaved as the tubes without stiffeners (described in the 

previous section). However, for most   stub columns of this type, the plastic mechanism 

zones were observed between the junction of the stiffener and the corners and their size 

became limited. These failure zones were concentrated at the ends for most specimens 

and excessive waves in the stiffeners were also observed. Such behavior was resulting 

from stress concentration at the ends and the initial imperfections arising from the weld 

and was affected by the size of stiffeners. Figures 5.3 to 5.6 show the specimens after 

failure. 

 

 

Group A  

S1 S2 S3 S4 

R1 R2 

 

Fig.5.1 Unstiffened tubes after failure, Group A. 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 64 

 

 

S1 S2 S3 S4 

R1 R2 

Group B               

 

 

 

 

 

 
 

S1-ST1 S2-ST1 S3-ST1 S4-ST1 

R1-ST2 R2-ST2 

Group I-A 

 
 

 

 

Fig.5.2 Unstiffened tubes after failure, Group B. 

Fig.5.3 Stiffened tubes after failure, Group I-A. 
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S1-ST1 S2-ST1 S3-ST1 S4-ST1 

R1-ST2 R-ST2 

Group I-B 

 

 

 

 

 

S1-ST2 S2-ST2 S3-ST2 S4-ST2 

R1-ST2,3 R2-ST2,3 

Group II-A 

 

 

 

 

Fig.5.5 Stiffened tubes after failure, Group II-A. 

Fig.5.4 Stiffened tubes after failure, Group I-B. 
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S1-ST2 S2-ST2 S3-ST2 S4-ST2 

R1-ST2,3 R2-ST2,3 

Group II-B 

 
 

 

 

 

 

5.2  Strains 

Strain results for the six stub columns from Group I are shown in Figures 5.7 to 

5.12 which represent the load in kN versus the µ−strain, ε (x10
-6

). The yield strain was 

varied from 0.0015 to 0.0035. 

The objective from using strain gauges in Group I is to check if the stiffeners of 

this group, which their sectional area is considered smaller compared to the section area 

of tubes than Group II, can carry stress effectively up to failure. In other words strain 

gauges were used to check if the stiffeners could be considered as a stiff support for the 

plate elements of the stub columns. Figures 5.7 to 5.12 show that the strains at the 

corners, stiffeners, and stiffener-plate junctions reach the yield strain, which means that 

the stiffeners were fully effective until failure as the corners. This result is very 

important in the derivation of the effective section for tubes with longitudinal stiffeners, 

Sec.5.4.

Fig.5.6 Stiffened tubes after failure, Group II-B. 
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Fig.5.7 Strains in square stiffened tube S1-ST1 (A) 

Fig.5.8 Strains in square stiffened tube S2-ST1 (B) 
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S3-ST1(B) 
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Fig.5.9 Strains in square stiffened tube S3-ST1 (B) 

Fig.5.10 Strains in square stiffened tube S4-ST1 (A) 
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Fig.5.11 Strains in rectangular stiffened tube R1-ST2 (B) 

Fig.5.12  Strains in rectangular stiffened tube R2-ST2 (B) 
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5.3   Postbuckling Strength 

5.3.1 Unstiffened Square and Rectangular Tubes 

Failure loads of the tested stub columns together with loads predicted by 

Karman’s and Winter’s formulas, for a comparison, are shown in Table5.1. Buckling 

coefficients for the sections, obtained from Fig.3.3 for all formulas, were 4.0 for square 

sections and 5.0 and 5.2 for R1 and R2 respectively. It should be mentioned that 

buckling coefficients for rectangular sections are higher than those for square sections, 

which reflects the interaction between the plate elements of the sides of the rectangular 

sections. This mean that the short sides restrict the long sides to buckle freely and make 

some restraint at the corners which allow the plate elements of rectangular section to 

carry higher stress than square section even though they may have the same b/t ratio. 

Fig.5.13 represents the ratio of the ultimate stress on the total area and the yield stress, 

Fu/Fy, against the slenderness parameter, λ. This slenderness parameter, λ, was varied 

between 0.72 and 1.29 for the test specimens. 

From Table 5.1 and Fig.5.13, it is obvious that Karman’s equation (Eq.2.32), 

which is a theoretical equation, overestimates the postbuckling strength for plate 

elements with relatively higher differences from the test results. The ratio between the 

experimental postbuckling strength to that predicted by Karman’s formula varies 

between 70% and 95%. Winter’s equation (Eq.2.33) also slightly overestimates the 

postbuckling strength for most specimens, except R1, but with relatively lower 

differences. The ratio between the experimental postbuckling strength to that predicted 

by Winter’s formula varies between 83% and 105%. 

In fact, the differences between the test results and Winter’s equation may be attributed 

to the manner of experimental testing (experimental procedure) and the sectional and 

the material properties. The effect of the experimental procedure can be explained by 
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reviewing other experimental studies, which investigate the behavior of plates through 

flexural tests. 

 

5.3.2 Stiffened Square and Rectangular Tubes  

Table 5.2 shows the experimental failure loads for the stub columns together with 

failure loads predicted by Karman’s and Winter’s formulas for Groups I and II. The 

load carried by the tube section alone was computed by subtracting the load carried by 

the four stiffeners, based on the assumption that the stiffeners were fully effective and 

carried their crushing load, from the total experimental failure load. Strain results 

verified that all stiffeners were fully effective until failure. Also Fig.5.14 shows the ratio 

of the ultimate stress on the total area and the yield stress, Fu/Fy, against the slenderness 

parameter, λ. This slenderness parameter, λ, was varied from 0.36 to 0.66 and buckling 

coefficients, kb, were obtained from Eq. 2.43. 

 Comparisons given in Table5.2 and Fig.5.14 between the experimental failure 

loads with Karman’s and Winter’s equations show obviously that the later equations 

well predict the crushing loads for all specimens, which means that the plate elements 

were fully effective at failure. However, it is evident that some stub column plates were 

still not fully effective at failure. The ratio between the experimental postbuckling 

strength and that predicted by Karman’s and Winter’s formulas varies between 80% and 

100%. Although some specimens, especially in Group I, did not achieve the ultimate 

strength, their postbuckling strength well improved with different ratios. 

 Initial imperfections and residual stresses resulted from welding and stress 

concentration at the specimens’ ends may be responsible for the lower strengths for this 

type of stub columns.  
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Other comparisons for the postbuckling strength of sections for all cases of side 

stiffening (no stiffeners, stiffeners in Group I, and stiffeners in Group II) are shown in 

Table 5.3 and Fig. 5.15. The results given in Table 5.3 and Fig. 5.15 clearly indicate the 

change in the postbuckling strength of tubes. Fig.5.15 represents the ratio of the load 

carried by tube sections alone for all cases using the average load of specimens A and B 

to the crushing load, (Pu)tube/Py, against the ratio of moment of inertia of the stiffeners to 

the forth order power of the tube thickness, Is/t
4
. It is observed from Fig.5.15 that the 

higher improvement in the postbuckling strengths occurs for tubes having higher 

width/thickness ratios. 

 

5.3.3   Stiffener Efficiency  

Postbuckling strengths of the stiffened tubes, the section of the tube alone, are also 

compared with the unstiffened tubes to observe the improvement in the strength. Table 

5.4 shows the ratio of the maximum load carried by the stiffened tubes, (Pu)st, to the 

maximum load carried by the unstiffened tubes, (Pu)unst. The loads in the table are the 

average of loads of specimen A and B for each section.  From the comparison, it can be 

seen that stiffened tubes were capable of supporting between 161% and 108% of the 

loads carried by unstiffened tubes. 

 The ratio of (Pu)st/(Pu)unst ,as a percentage, is drawn versus the ratio of the 

sectional area of stiffeners and tubes in Fig.5.16 as well as the linear trend lines for 

Groups I and II. It is obviously observed from the slops of the two lines (Fig.5.16) that 

the strengths of specimens of Group I reach higher value even though the stiffeners 

were lighter. Moreover, no improvement in stiffening effect was obtained through the 

heavier stiffeners and the lighter stiffeners were sufficient to produce optimum effect 

and, therefore, the lighter stiffeners are more efficient.  All the previous observations 

also can be shown in Table 5.3 and Fig. 5.15. 
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Table5.1 Test results of stub columns of unstiffened tube sections. 

From test Karman’s Eq.  Winter’s Eq. 

Specimen 

Section 

dimensions 

mm 

Buckling 

coefficient        

k 

Yield 

strength Fy       

MPa 

Slenderness 

parameter                 

λ 
Max. Load 

kN 

Fu/Fy Max. Load 

kN 

Fu/Fy Max. Load 

kN 

Fu/Fy 

S1-A 100x100x1.5 4 281 1.29 92 0.55 128 0.77 107 0.64 

S1-B 100x100x1.5 4 281 1.29 93 0.56 128 0.77 107 0.64 

S2-A 100x100x2.1 4 364 1.05 189 0.63 286 0.96 226 0.75 

S2-B 100x100x2.1 4 364 1.05 187 0.62 286 0.96 226 0.75 

S3-A 100x100x2.5 4 376 0.89 300 0.82 367 1.00 310 0.85 

S3-B 100x100x2.5 4 376 0.89 298 0.81 367 1.00 310 0.85 

S4-A 100x100x3.1 4 381 0.72 434 0.95 458 1.00 442 0.97 

S4-B 100x100x3.1 4 381 0.72 431 0.94 458 1.00 442 0.97 

R1-A 150x90x2.9 5 404 1.07 427 0.78 512 0.93 407 0.74 

R1-B 150x90x2.9 5 404 1.07 419 0.76 512 0.93 407 0.74 

R2-A 200x100x4.9 5.2 453 0.87 1056 0.82 1288 1.00 1103 0.86 

R2-B 200x100x4.9 5.2 453 0.87 1072 0.83 1288 1.00 1103 0.86 
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Table5.2 Test results of stub columns of stiffened tube sections, Group I and II. 

Section dimensions From Test Karman’s Eq. Winter’s Eq. 

Specimens Tube 

mm 

Stiffeners 

mm 

Buckling 

coefficient 

kb 

Yield 

stress for 

tube Fy     

MPa 

Slenderness 

parameter   

λ 

Yield stress 

for stiff. 

Fystif          

MPa 

Max. 

Load, Pu  

kN 

Max. Load 

for stiff.   

Pu(stiff) 

 kN 

Max. Load 

for tube 

Pu(tube) 

  kN 

Fu/Fy 

 (tube) 

Max. Load 

for tube 

Pu(tube)  

 kN 

Fu/Fy 

 (tube) 

Max. Load 

for tube 

Pu(tube) 

  kN 

Fu/Fy 

 (tube) 

S1-ST1A 100x100x1.5 11.8x3.7 15.2 281 0.66 333 209 58 151 0.91 166 1.0 166 1.0 

S1-ST1B 100x100x1.5 11.8x3.7 15.2 281 0.66 333 206 58 148 0.89 166 1.0 166 1.0 

S2-ST1A 100x100x2.1 11.8x3.7 10.9 364 0.63 333 321 58 263 0.88 299 1.0 299 1.0 

S2-ST1B 100x100x2.1 11.8x3.7 10.9 364 0.63 333 325 58 267 0.89 299 1.0 299 1.0 

S3-ST1A 100x100x2.5 11.8x3.7 9.4 376 0.58 333 417 58 359 0.98 367 1.0 367 1.0 

S3-ST1B 100x100x2.5 11.8x3.7 9.4 376 0.58 333 410 58 352 0.96 367 1.0 367 1.0 

S4-ST1A 100x100x3.1 11.8x3.7 8.1 381 0.51 333 526 58 468 1.02 458 1.0 458 1.0 

S4-ST1B 100x100x3.1 11.8x3.7 8.1 381 0.51 333 525 58 467 1.02 458 1.0 458 1.0 

R1-ST2A 150x90x2.9 30x3.2 20 404 0.54 330 691 127 564 1.03 549 1.0 549 1.0 

R1-ST2B 150x90x2.9 30x3.2 20 404 0.54 330 628 127 501 0.91 549 1.0 549 1.0 

R2-ST2A 200x100x4.9 30x3.2 11.9 453 0.58 330 1280 127 1153 0.90 1288 1.0 1288 1.0 

R2-ST2B 200x100x4.9 30x3.2 11.9 453 0.58 330 1274 127 1147 0.89 1288 1.0 1288 1.0 

               

S1-ST2A 100x100x1.5 30x3.2 16 281 0.65 330 259 127 132 0.80 166 1.0 166 1.0 

S1-ST2B 100x100x1.5 30x3.2 16 281 0.65 330 277 127 150 0.90 166 1.0 166 1.0 

S2-ST2A 100x100x2.1 30x3.2 16 364 0.52 330 398 127 271 0.91 299 1.0 299 1.0 

S2-ST2B 100x100x2.1 30x3.2 16 364 0.52 330 402 127 275 0.92 299 1.0 299 1.0 

S3-ST2A 100x100x2.5 30x3.2 16 376 0.44 330 501 127 374 1.02 367 1.0 367 1.0 

S3-ST2B 100x100x2.5 30x3.2 16 376 0.44 330 500 127 373 1.02 367 1.0 367 1.0 

S4-ST2A 100x100x3.1 30x3.2 16 381 0.36 330 604 127 477 1.04 458 1.0 458 1.0 

S4-ST2B 100x100x3.1 30x3.2 16 381 0.36 330 604 127 477 1.04 458 1.0 458 1.0 

R1-ST2,3A 150x90x2.9 40x5.2, 30x3.2 20 404 0.54 325 747 198 549 1.00 549 1.0 549 1.0 

R1-ST2,3B 150x90x2.9 40x5.2, 30x3.2 20 404 0.54 325 757 198 559 1.02 549 1.0 549 1.0 

R2-ST2,3A 200x100x4.9 40x5.2, 30x3.2 18.4 453 0.46 325 1357 198 1159 0.90 1288 1.0 1288 1.0 

R2-ST2,3B 200x100x4.9 40x5.2, 30x3.2 18.4 453 0.46 325 1458 198 1260 0.98 1288 1.0 1288 1.0 
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Fig.5.13 Test results of postbuckling strength of plate elements of unstiffened tubes. 

 

Fig.5.14 Test results of postbuckling strength of plate elements of stiffened tubes. 
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Table 5.3 Postbuckling strength of tube sections for all cases of stiffening. 

Section dimensions 
Group Specimens Tube 

mm 

Stiffeners 

mm 

(Pu)tube 

kN 

Fy 

MPa 

Atube 

mm
2
 

Py 

kN 
(Pu)tube/Py Is/t

4
 

S1 100x100x1.5 - 92.5 281 591 166.1 0.56 0 

S2 100x100x2.1 - 188 364 822.36 299.3 0.63 0 

S3 100x100x2.5 - 299 376 975 366.6 0.82 0 

S4 100x100x3.1 - 432.5 381 1201.56 457.8 0.94 0 

R1 150x90x2.9 - 423 404 1358.36 548.8 0.77 0 

No 

stiffener 

R2 200x100x4.9 - 1064 453 2843.96 1288.3 0.83 0 

S1-ST1 100x100x1.5 11.8x3.7 149.3 281 591 166.1 0.90 100 

S2-ST1 100x100x2.1 11.8x3.7 264.8 364 822.36 299.3 0.88 26 

S3-ST1 100x100x2.5 11.8x3.7 355.3 376 975 366.6 0.97 13 

S4-ST1 100x100x3.1 11.8x3.7 467.3 381 1201.56 457.8 1.02 5 

R1-ST2 150x90x2.9 30x3.2 532.8 404 1358.36 548.8 0.97 102 

Group I 

R2-ST2 200x100x4.9 30x3.2 1150.3 453 2843.96 1288.3 0.89 12 

S1-ST2 100x100x1.5 30x3.2 141.3 281 591 166.1 0.85 1422 

S2-ST2 100x100x2.1 30x3.2 273.3 364 822.36 299.3 0.91 370 

S3-ST2 100x100x2.5 30x3.2 373.8 376 975 366.6 1.02 184 

S4-ST2 100x100x3.1 30x3.2 477.3 381 1201.56 457.8 1.04 78 

R1-ST2,3 150x90x2.9 40x5.2, 30x3.2 554.4 404 1358.36 548.8 1.01 392 

Group II 

R2-ST2,3 200x100x4.9 40x5.2, 30x3.2 1209.9 453 2843.96 1288.3 0.94 48 
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Fig.5.15 Postbuckling strength of tube sections for all cases of stiffening. 
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Table5.4 Comparison of postbuckling strength of unstiffened and stiffened stub column 

tube sections. 

Group Specimens 

Max load carried 

by unstiff. tube   

(Pu)unst     

  kN 

Max load carried 

by stiff. tube 

 (Pu)st    

  kN 

(Pu)st/(Pu)unst  

% 

Astiff/Atube  

% 
Is/Iso 

S1-ST1 92.5 149.3 161 30 0.87 

S2-ST1 188 264.8 141 21 0.33 

S3-ST1 299 355.3 119 18 0.20 

S4-ST1 432.5 467.3 108 15 0.11 

R1-ST2 423 532.8 126 28 1.16 

Group I 

R2-ST2 1064 1150.3 108 14 0.19 

S1-ST2 92.5 141.3 153 65 12.41 

S2-ST2 188 273.3 145 47 4.68 

S3-ST2 299 373.8 125 39 2.87 

S4-ST2 432.5 477.3 110 32 1.63 

R1-ST2,3 423 554.4 131 45 4.47 

Group II 

R2-ST2,3 1064 1209.9 114 21 0.72 
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Fig.5.16 Efficiency of stiffeners in Groups I and II of stiffened tubes. 
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5.4 Proposed Effective Width Equations 

It was observed from the test results that Winter’s equation slightly overestimates 

the postbuckling strength for most stiffened and unstiffened tested stub columns tubes 

which may yield incorrect estimates for the strength of columns having the same cross 

sections. Therefore compact effective section formulas, for both types, based on the test 

results will be derived which take into account the interaction between plate elements of 

the sections and yield the entire effective section directly. 

Regressions analysis for the data obtained from tests was conducted using the 

SPSS-10 Program, which proved to be a powerful tool in data analysis. 

 

5.4.1 Unstiffened Square and Rectangular Tubes 

For regression analysis purpose, the compact form for effective section, which is 

similar to Eq. 2.20, can be expressed as follows: 

λ
1C

A

A

F

F e

y

u ==                                                                        (5.1) 

where  

C1     nondimensional constant obtained by regression analysis. 

Ae     effective area. 

A        total area of section. 

λ slenderness parameter of plate. 

Fu        ultimate stress on total area. 

Fy        yield stress. 

Non-linear regression analysis was conducted to determine C1 from the data presented 

in Table 5.1 for λ and Fu/Fy. The result is C1=0.714 with 84% for the coefficient of 

determination, R
2
. Substituting C1 into Eq.5.1 to obtain: 
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λ

714.0
=

A

Ae                                                                            (5.2) 

Substituting λ into Eq.5.2, using ν=0.3, the proposed equation can be expressed as 

follows: 

y

e kE

tbA

A

σ)/(

68.0
=              ≤1                                                  (5.3) 

Prior to failure, the yield stress at the edges is replaced by σe and Eq.5.3 can be written 

as: 














=

e

e

kE

tb
AA

σ)/(

68.0
                                                             (5.4) 

where  

b/t    maximum width/thickness ratio of  the plate in  the cross section. 

k      buckling stress coefficient determined from Fig.3.3. 

A special case can be considered when the tube is square and the widths of all 

plate elements are equal with k=4.0. For this case Eqs. 5.3 and 5.4 can be written as: 

y

e E

tbb

b

σ)/(

36.1
=     ≤1                                                         (5.5) 

e

e

E
tb

σ
36.1=                                                                     (5.6) 

For a given yield stress the plate element remains fully effective up to failure, if 

the ratio b/t is below a limiting value. This limiting value, (b/t)lim, can be obtained by 

setting ,in Eq.5.3, the ratio of  Ae/A equal to 1.0. Therefore Eq. 5.3 yields: 

y

kE

t

b

σ
68.0

lim

=







                                                                 (5.7) 

The corresponding limiting slenderness parameter is λlim =0.714 (from Eq.5.2).  
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Table5.5 shows the postbuckling strength as predicted by Eq.5.3 and the 

discrepancy from test results, which varied between –9.5% and 14.3%. Fig.5.17 also 

represents the postbuckling strength curve predicted by Eq. 5.3 and other curves plotted 

by Karman’s and Winter’s formulas as well as the test results. 

It is observed from the curve that for the range of slenderness parameter, λ, from 

1.29 to 0.769, the postbuckling strength predicted by Eq.5.3 is relatively lower than that 

predicted by Winter’s formula. Moreover, for the range of slenderness parameter, λ, 

from 0.769 to 0.72 the postbuckling strength predicted Eq.5.3 is relatively higher than 

that predicted by Winter’s formula. 

 

Another comparison between the experimental data and Winter’s formula was 

conducted using non-linear regression analysis for Winter’s equation form, Eq.2.33, as 

follows: 

=
y

u

F

F








−=

λλ
21

1 C

A

Ae                                                           (5.8) 

where 

C2      nondimensional constant obtained by regression analysis. 

Using the data presented in Table 5.1 for λ and Fu/Fy, the result of the regression 

analysis is: C2=0.25 with 81% for the coefficient of determination, R
2
,
 
whereas the 

value of C2 in Winter’s equation is 0.22. It is worth mentioning that the value of C2 in 

the oldest version of winter’s Equation before 1968 was 0.25 (Galambos, 1998), which 

is the same value of the coefficient of C2 that obtained in this study. 
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5.4.2 Stiffened Square and Rectangular Tubes  

The postbuckling strength measured by testing this type of stub columns, for the 

tube section alone, were relatively scattered (Fig.5.14). The best fit for the test results 

was obtained by adding a constant coefficient to Eq.5.1. Therefore Non-linear 

regression analysis was conducted for the following form: 

4

3 C
C

A

A

F

F e

y

u +==
λ

                                                                (5.9) 

where 

C3 and C4    nondimensional constants obtained by regression analysis. 

Using the data presented in Table 5.2 for λ and Fu/Fy, the result is: C3=0.128 and 

C4=0.706 with 46% for the coefficient of determination, R
2
. Substituting C3 and C4 into 

Eq.5.9 to obtain: 

706.0
128.0

+=
λA

Ae                                                               (5.10) 

 

Substituting λ into Eq.5.10, using ν=0.3, the proposed equation can be expressed as 

follows: 

706.0
)/(

122.0
+=

y

be Ek

tbA

A

σ
             ≤1                                  (5.11) 

Prior failure, the yield stress at the edges is replaced by σe and Eq.5.11 can be written as  














+= 706.0

)/(

122.0

e

b

e

Ek

tb
AA

σ
                                           (5.12) 

where  

b/t     maximum width/thickness ratio of the total  plate width, b, in  cross-

section. 

kb       buckling stress coefficient of the total  plate width, b, determined from 

Eqs.2.42 and 2.43. 
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The limiting value of fully effective plate can be obtain from Eq. 5.11 which yields: 

y

b Ek

t

b

σ
415.0

lim

=







                                                             (5.13) 

The corresponding limiting slenderness parameter is λlim =0.435 (from Eq.5.10).  

Table5.6 shows the postbuckling strength load predicted by Eq.5.11 and the 

discrepancy from the test results, which varied between -13.4% and 8.3%. Fig.5.18 also 

shows the postbuckling strength curve predicted by Eq. 5.11 together with the test 

results.  

 

5.4.3 Characteristics of the Proposed Equations 

Unstiffened square and rectangular tube sections 

The characteristics of Eqs.5.3 and 5.4 can be summarized as follows: 

• Their form is shorter than Winter’s formula. 

• Utilizing the interaction between the plate elements in rectangular sections where 

buckling coefficient will be more than 4.0 (for uniform section thickness), whereas 

the AISC equation (Eq.3.36) uses 4.0 for all cases.  

• Computing the entire effective section directly, whereas in the AISC equation it 

needs to add the effective width for each side independently. 

Stiffened square and rectangular tube sections 

Eqs.5.11 and 5.12 have the same characteristics as the previous equations (5.3 and 

5.4) and additional advantageous can be summarized as follows: 

• They allow the designer to predict the postbuckling strength for tube sections having 

stiffeners that are not stipulated in the AISC specification. 

• They allow the designer to predict the postbuckling strength for tube sections having 

lighter stiffeners less than that are recommended in the AISI specification. 

82 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

  

 Table5.5 Postbuckling strength according to the proposed equation for unstiffened 

tubes, Eq.5.3.  

From Test Eq.5.3 

Specimen 
Dimensions  

mm    
Max. load 

Pu  

 kN 

Fu/Fy 

Max. load 

Pu  

 kN 

Fu/Fy 

Discrepancy

% 

S1-A 100x100x1.5 92 0.55 91.8 0.55 0.3 

S1-B 100x100x1.5 93 0.56 91.8 0.55 1.3 

S2-A 100x100x2.1 189 0.63 204.7 0.68 -8.3 

S2-B 100x100x2.1 187 0.62 204.7 0.68 -9.5 

S3-A 100x100x2.5 300 0.82 294.8 0.80 1.7 

S3-B 100x100x2.5 298 0.81 294.8 0.80 1.1 

S4-A 100x100x3.1 434 0.95 456.4 1.00 -5.2 

S4-B 100x100x3.1 431 0.94 456.4 1.00 -5.9 

R1-A 150x90x2.9 427 0.78 366.0 0.67 14.3 

R1-B 150x90x2.9 419 0.76 366.0 0.67 12.6 

R2-A 200x100x4.9 1056 0.82 1054.2 0.82 0.2 

R2-B 200x100x4.9 1072 0.83 1054.2 0.82 1.7 
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Fig5.17 Postbuckling strength according to the proposed equation for unstiffened 

tubes. 
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Table5.6 Postbuckling strength according to the proposed equation for stiffened tubes, 

Eq.5.11. 
Section dimensions From Test Eq.5.11 

Specimen 
Tube 

mm 

stiffeners 

mm 

Max. load, 

Pu, kN 

 

 

Fu/Fy 

Max. load 

Pu   kN 

 

  

Fu/Fy 

Discrepancy 

% 

S1-ST1A 100x100x1.5 11.8x3.7 150.8 0.91 149.5 0.900 0.9 

S1-ST1B 100x100x1.5 11.8x3.7 147.8 0.89 149.5 0.900 -1.1 

S2-ST1A 100x100x2.1 11.8x3.7 262.8 0.88 272.2 0.909 -3.5 

S2-ST1B 100x100x2.1 11.8x3.7 266.8 0.89 272.2 0.909 -2.0 

S3-ST1A 100x100x2.5 11.8x3.7 358.8 0.98 339.7 0.927 5.3 

S3-ST1B 100x100x2.5 11.8x3.7 351.8 0.96 339.7 0.927 3.4 

S4-ST1A 100x100x3.1 11.8x3.7 467.8 1.02 438.1 0.957 6.4 

S4-ST1B 100x100x3.1 11.8x3.7 466.8 1.02 438.1 0.957 6.2 

R1-ST2A 150x90x2.9 30x3.2 564.3 1.03 517.5 0.943 8.3 

R1-ST2B 150x90x2.9 30x3.2 501.3 0.91 517.5 0.943 -3.2 

R2-ST2A 200x100x4.9 30x3.2 1153.3 0.90 1193.9 0.927 -3.5 

R2-ST2B 200x100x4.9 30x3.2 1147.3 0.89 1193.9 0.927 -4.1 

        

S1-ST2A 100x100x1.5 30x3.2 132.3 0.80 149.9 0.903 -13.4 

S1-ST2B 100x100x1.5 30x3.2 150.3 0.90 149.9 0.903 0.2 

S2-ST2A 100x100x2.1 30x3.2 271.3 0.91 285.0 0.952 -5.1 

S2-ST2B 100x100x2.1 30x3.2 275.3 0.92 285.0 0.952 -3.5 

S3-ST2A 100x100x2.5 30x3.2 374.3 1.02 365.5 0.997 2.4 

S3-ST2B 100x100x2.5 30x3.2 373.3 1.02 365.5 0.997 2.1 

S4-ST2A 100x100x3.1 30x3.2 477.3 1.04 486.0 1.062 -1.8 

S4-ST2B 100x100x3.1 30x3.2 477.3 1.04 486.0 1.062 -1.8 

R1-ST2,3A 150x90x2.9 40x5.2, 30x3.2 549.4 1.00 517.5 0.943 5.8 

R1-ST2,3B 150x90x2.9 40x5.2, 30x3.2 559.4 1.02 517.5 0.943 7.5 

R2-ST2,3A 200x100x4.9 40x5.2, 30x3.2 1159.4 0.90 1268.0 0.984 -9.4 

R2-ST2,3B 200x100x4.9 40x5.2, 30x3.2 1260.4 0.98 1268.0 0.984 -0.6 
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Fig5.18 Postbuckling strength according to the proposed equation for stiffened tubes. 
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5.5  Interaction of Local and Overall Flexural Buckling 

The column strength equations presented by the ASIC specifications, the ASD and 

the LRFD, were adjusted to take into account the reduction of stiffness due to local 

buckling. In order to predict the interaction strength for columns having the same 

sections, Eqs.5.4 and 5.12, which give the effective section when the stress at the edges 

of plate elements is less than or equal to the yield stress, were used. The procedure and 

equations outlined in Sec.3.2.2 will be used to construct the column strength curves. 

  

5.5.1   Strength of Unstiffened Tubular Columns 

The column strength equations presented by the ASD specification were adjusted 

twice to take into account the local buckling of the plate elements. The first 

modification was using the proposed effective section equation (Eq.5.4) and the second 

one was using the effective width equation presented in the AISC specification 

(Eq.5.36). This was done also for the column strength equations presented by the LRFD 

specification. For comparison, the strength of columns, in which no local buckling will 

occur, was computed by the ASD and the LRFD equations.  

 Figures 5.19 to 5.23 represent the ratio of the average stress to the yield stress, 

Fav/Fy, versus the slenderness parameter of columns, λc, for the sections S1, S2, S3, R1, 

and R2. The strength curve of section S4 is not shown because the section is not 

affected by local buckling, and thus it is considered fully effective until failure. It is 

observed from the figures that for sections having plate elements with relatively higher 

width/thickness ratio, b/t, the interaction begins at a relatively lower stress. When the 

width/thickness ratio, b/t, decreases and approaches (b/t)lim, the interaction begins at 

relatively higher stress and the ratio Fav/Fy approaches 1.0. 
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It is also observed that for column sections with plate elements with relatively 

lower slenderness parameter, λ, the differences between the proposed interaction 

strength and that proposed by the AISC specifications become smaller. This is because 

the AISC effective width expression was essentially adjusted from Winter’s formula, 

which yields postbuckling strength close to that obtained by Eq.5.3 at relatively lower λ 

ratios. This observation is clearly shown from the ratio of QAISC/QEq.5.3 in Table 5.7. 

 

5.5.2 Strength of Stiffened Tubular Columns 

Most of the stub column sections of Group II were fully effective up to failure 

while the sections of Group I were partially effective at failure and local buckling 

occurred at relatively higher stresses. Therefore, the procedure presented in the previous 

section was followed to account for the interaction buckling for columns having the 

sections of Group I using the proposed effective section equation for stiffened tube 

sections (Eq.5.12). 

Figures 5.24 to 5.28 show the interaction strength curves for columns having 

sections S1-ST1, S2-ST1, S3-ST1, R1-ST2, and R2-ST2. The strength obtained from 

the curves is assigned for the tubes alone. The total strength can be obtained by adding 

the strength of the stiffeners. 

In fact, no reference in the AISC specifications for compressed plate elements 

supported laterally by stiffeners. The effective width equations presented in the 

specifications (Eq.3.36) is applicable for thin plate element supported laterally by stiff 

supports. Therefore, no comparison is made for interaction strengths, and only the 

interaction strength for columns using Eq.5.12 is presented together with the strength 

curve in which no local buckling take place. Furthermore, the moments of inertia of the 
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stiffeners, Is, for Group I are below values recommended by AISI specification. Thus 

the strength of the columns cannot even be compared with the AISI specification. 

 

5.5.3   Strength Reduction Factor, Q 

The reduction coefficient, Q=Ae/A=Fav/Fy, for the cross sectional area at zero 

length of column in which Fav=Fu for the proposed strength (Eqs.5.3 and 5.11) is shown 

in Tables 5.7 and 5.8 for unstiffened and stiffened tubes respectively. Only the sections 

that are shown in the strength column curves are presented in these tables. For 

rectangular sections, the proposed equations yield the factor Q directly, whereas in the 

AISC it needs to compute this factor for each side independently from Eq.3.36 and add 

these together to get Q. The short sides of rectangular sections shown in the curves are 

fully effective because their width/thickness ratios are less than the limiting values and 

their sectional properties were computed based on this assumption. For comparison, the 

strength reduction factor, Q, predicted by the AISC specifications for unstiffened tubes 

is presented in Table 5.7. It is important to note that the strength reduction factor Q for 

the ASD is equal to the LRFD because they use the same effective width equation.  

 

5.5.4 Single Column Strength Curve 

A single column strength curve for all sections can be developed using a fictitious 

yield stress, QFy, instead of the real material yield stress, Fy. The strength reduction 

factor, Q, proposed in this study or that computed according to the AISC specifications 

may be used to obtain the strength of tubular columns. Fig.5.29 represents the reduced 

strength ratio, Fav/QFy, versus the modified slenderness parameter, Q λc, for the 

column. The ASD and LRFD equations are used in this figure. It is observed from all 

column strength curves that the ASD equations yield higher strength (17% increase) 

than the LRFD equations.  
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Table 5.7 Reduction factor, Q, for unstiffened tubes. 

Reduction factor, Q 

Section 
Dimensions 

mm 

Yield 

stress Fy 

MPa 
b/t 

Slenderness 

parameter of 

plate 

λ 

Eq.5.3 AISC 
QAISC/QEq.5.3 

S1 100x100x1.5 281 65.7 1.29 0.55 0.66 1.20 

S2 100x100x2.1 364 46.6 1.05 0.68 0.78 1.15 

S3 100x100x2.5 376 39.0 0.89 0.80 0.88 1.10 

R1 150x90x2.9 404 50.7 1.07 0.67 0.81 1.21 

R2 200x100x4.9 453 39.8 0.87 0.82 0.87 1.06 

 

 

Table 5.8 Reduction factor, Q, for stiffened tubes.  

Section 
Dimensions 

mm 

Yield stress 

Fy 

MPa 
b/t 

Slenderness 

parameter 

of plate 

λ 

Reduction factor, Q 

Eq.5.11 

S1-ST1 100x100x1.5-11.8x3.7 281 65.7 0.66 0.90 

S2-ST1 100x100x2.1-11.8x3.7 364 46.6 0.63 0.91 

S3-ST1 100x100x2.5-11.8x3.7 376 39.0 0.58 0.93 

R1-ST2 150x90x2.9-30x3.2 404 50.7 0.54 0.94 

R2-ST2 200x100x4.9-30x3.2 453 39.8 0.58 0.93 
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 Fig.5.19  Column strength curve of section S1 (100x100x1.5mm) 
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Fig.5.20  Column strength curve of section S2 (100x100x2.1mm) 

Fig.5.21   Column strength curve of section S3 (100x100x2.5mm) 
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R1 (150*90*2.9mm)
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Fig.5.22  Column strength curve of section R1 (150x90x2.9mm) 

Fig.5.23   Column strength curve of section R2 (200x100x4.9mm) 
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S1-ST1 (100*100*1.5,11.8*3.7mm)
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Fig.5.24   Column strength curve of section S1-ST1 (100x100x1.5, 11.8x3.7 mm) 

Fig.5.25   Column strength curve of section S2-ST1 (100x100x2.1, 11.8x3.7 mm) 
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S3-ST1 (100*100*2.5,11.8*3.7mm)
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Fig.5.26  Column strength curve of section S3-ST1 (100x100x2.5, 11.8x3.7 mm) 

Fig.5.27   Column strength curve of section R1-ST2 (150x90x2.9, 30x3.2 mm) 
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R2-ST2 (200*100*4.9,30*3.2mm)
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Fig.5.28   Column strength curve of section R2-ST2 (200x100x4.9, 30x3.2 mm) 
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Fig.5.29   Single column strength curve for all sections  
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Chapter 6 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

 

 

 

6.1 Summary 

An experimental study was conducted to investigate the behavior and 

postbuckling strength of plate elements in square and rectangular steel hollow sections 

having width-thickness ratios more than that in common rolled sections and also their 

effect on the strength of columns.   

Two types of stub columns were tested under axial compression until failure; 

ordinary tubes, and tubes reinforced by longitudinal stiffeners on their sides. The 

variables in the study were, shape of tube sections in which square and rectangular 

sections were used, width-thickness ratios, and the size of the stiffeners. The stub 

column tubes with stiffeners were tested to investigate the effect of stiffeners on 

postbuckling strength of plate elements and the efficiency of the stiffeners. 

Based on the test results, numerical methods were used to formulate compact 

effective section equations, which take into account the interaction between plate 

elements for unstiffened and stiffened tube sections. These equations were also 

compared with other formulas used in steel practice. Interaction between local and 

overall flexural buckling was predicted for columns having the same sections as the 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 95 

tested specimens using the modified SSRC column strength equations and the 

interaction strength of tubular columns was obtaining using the proposed effective 

section formulas, and comparing results with the strength predicted by the AISC 

specifications, ASD and LRSD. 

 

6.2  Conclusions 

Postbuckling strength of plate elements and stiffener efficiency: 

From the experimental study, the following conclusions can be drawn: 

1.  For the tested stub columns, Winter’s formula, in general, slightly overestimates the 

postbuckling strength of the plate elements. The ratio between the experimental 

postbuckling strength to that predicted by Winter’s formula varies between 83% and 

105% for unstiffened tubes, and between 80% and 100% for stiffened tubes. 

2.  Based on the test results the following compact effective section equations are 

developed: 

• For unstiffened square and rectangular hollow sections: 

when  
e

kE

t

b

σ
68.0≥  
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e

e

kE

tb
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σ)/(

68.0
 

otherwise  Ae=A 

• For stiffened square and rectangular hollow sections: 

when 
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b Ek
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otherwise  Ae=A 
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3.   The discrepancies between the proposed postbuckling strength and the test results 

are within an acceptable range which varied between –9.5% and 14.3% for unstiffened 

tubes and between -13.4% and 8.3% for stiffened tubes and, consequently, the proposed 

effective section equations may be used for the tested sections. 

4.   The proposed effective section equations take into account the interaction between 

plate elements and yield the total effective section directly. 

5.  Distinct increasing in the postbuckling strength can be attained using longitudinal 

stiffeners in which some tested sections become entirely effective as rolled sections. 

The improvement in the postbuckling strength was relatively higher for sections having 

higher width/thickness ratios. From comparisons, stiffened tubes were capable of 

supporting loads between 161% and 108% of the unstiffened tubes. 

6.  The test results also show that the smaller stiffeners are more efficient in increasing 

the strength compared to their size as well as their acceptable sight on columns. 

 

Interaction strength of tubular columns 

From the predicted interaction strength of tubular columns, the following 

conclusions can be drawn: 

1.   The proposed effective section equations yield the total strength reduction factor, Q, 

for the sections directly. 

2.  The interaction between local and overall flexural buckling begins at relatively lower 

stress for higher values of slenderness ratio of plates. From comparisons, the proposed 

interaction strengths for unstiffened tubular columns are relatively closer to the 

predicted strength by the AISC, ASD and LRFD, for sections with relatively lower 

slenderness ratios of plates. 
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6.3  Recommendations 

Based on the obtained results and conclusions, the following is recommended: 

1.  Further tests on stub columns and beams having square and rectangular hollow 

sections with wide range of sectional dimensions and material properties seem to be 

desirable in order to study the general behavior and postbuckling strength of the plate 

elements and to verify the validity of the proposed effective section equations for other 

ranges. 

2.  Tests on columns having the sectional properties of the tested tubes with and without 

stiffeners are recommended to investigate and verify the interaction strength with 

various slenderness ratios.  

3.  Further studies concerning the behavior of longitudinal stiffeners and the effect of 

imperfections due to welding and residual stress are needed. Moreover, further studies 

considering the stiffeners as available economic elements that can improve the load 

carrying capacity of columns with minimal area of steel may also be conducted.  
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���� 

� ا������ ����� ا����ري و�����ه� �� 	��و	� ا����د� &��ك ا�$!�#" ا�!� ذ

 إ��اد

 اح�* ح-, اح�* ا��ّ(�ف

 ا��
ـ�ف

��&ـ� ا��23�4/ ا0&.�ذ ا�*آ.�ر 

 

 �� ������� ا����ذ� ا���ّ��� ٍ�'(%��ء '��ك و م%�وم" اٍ�� ��ج ا�* ��+, �%� ,/ إ.�اء درا'

'��آ اآ � م@ ا���(�دة -ذات ا�
�; ا���ب1 وا��8(>*; وا�(: ��9 �8 " ��ض) ا�5 �ب*"(���%�12 ا��+�0" 

0 إ�DE, B*�ه� ��B ا��%�وم ا���*" �����د�Fٍا ، �%� ,/ اK( �ر ���*@ م@ ا����J . 0: ا��%�12 ا���H8ب

 ��B ا�+�ا�Mا�%�*�ة ,RH ا�OPQ ا���Hري �(B ا9��ٍ*�ر ، أ��ب*M ��د� وأ��ب*M مH�8" ب(%�وي*��2 . 

ب��'(�Yد ��X��)� B اKW( �ر ، ,/ ص*�U" م��د�(*@ ,+�� *(*@ مT(��,*@ ���%>1 ا��ّ��ل 0: آ; 

 ���م@ م�*^ات ه[J ا����د�(�ن ا�9�� KE,[ان 0: ا�W( �ر ، ��ع ���@ ب9�� 1Z�, م%�وم" ا�W ��ج ا�

 �@ ,���; ا�W ��ج ا���F�: إ0�F" ا�B ذ�_ ,/ ,�1Z  ا��، ا�(���; ب*@ ص���� ا��%>1 +,�Y�ا %�وم

������� و ا�W ��ج ا���: ��a��ة ا���ّ�� م@ ا��%�12 ا�5 �ب*" وذ�_ بٍ�'(�Tام م��د�ت م%�وم" ا����د 

آ�� ,�R م%�ر�" آ; ا�X��)Y ا�(: ,/ ا���Hل ��*�9 ب�����د�ت ا���Y*" ذات  . SSRCا�����" وا��%�م" م@

  .AISCت ا���Z" وآ[�_ م�اص��

أ�9bت �(��X اKW( �ر أن ا����د�" ا���T)8م" 0: ا�(> *%�ت ا����ذ� ,�>: م%�وم" أ��B �8 *� م@ 

م@ ���*" ا�Kى آ��R ا���و�Zت ب*@ ا��%�وم" ا��%(��" ، ا��%�وم ا�(: ,/ ا���Hل ��*�9 م@ اKW( �ر

T)'ام���*" ا :Y�� ��% ��" م�ود ا��H�ا @�F ر� )KWم@ ا "+,�Y�0: وا "��ام م��د�ت ا��%>1 ا��ّ��ل ا��%(�

 .ه[J ا��را'" �9[ا ا��Yع م@ ا�%>���ت ا���رو'"

 B�رو'" ا��12 ا��%���  ���إن ا'(���ل ا�(%�وي ا�>��*" ا�Y8H, �9b آ *�ا 0: م%�وم" ا�W ��ج ا�

ات ا�8��آ�ت در." أن آd*�ا م�9Y اص � م%>��9 0ّ��� ب����م; آ�� ه� ا��Hل 0: ا��%�12 ا���H8ب" ذ

و�Z آ�ن ا�(8H@ 0: ا��%�وم" وا�HF ب
�; آ *� 0: ا��%�12 ا�(: ,(��ن م@ ص���� ���*" ا�0�HY" ، ا�� *�ة

 ،�*P���9 ا�+Hم%�ر�" ب  .آ�� أ�9bت اKW( �رات أن ا�(%�وي ا��P*�ة اآ�d آ��ءة 0: ر10 ا��%�وم

أن ا�(���; ب*@ ا�W ��ج ا���F�: أ�9bت مYHY*�ت ا��%�وم ا�(����*" ا��(�Z��a� "��ة ب��Fح 

 *��� ������� "0�HY�م� ,��ن �8 " ا�Y� _�8 *� وذ� "Q�TYإ.�9دات م �Y� ج ا���: � �أ�� �Wو ا �������

م@ ه[J ا��YHY*�ت ���@ آ[�_ ا'(Y(�ج ,%�رب ا��%�وم ا�(����*" ا��(�Z�" م@ ه[J ا��را'" وآ[�_ ، �8 *�

 وذ�_ ��a��ة ا�5 �ب*"  ��Yم� ,��ن �8 " ا�0�HY" ������� مAISC "Q�TYا��(�Z�" م@ Z ; م�اص��ت 

 .ا���د�"
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APPENDIX 

 

Terminology 

The following terms were frequently used in this thesis. 

Bifurcation: a term relating to the load-deflection behavior of a perfectly straight and 

perfectly centered compression element at critical load. 

Buckling load: the load at which a perfectly straight member under compression 

assumes a deflected position. Also called critical load. 

Effective width: a reduced width of plate or flat segment of a cross section, which 

assuming uniform stress distribution, leads to the same behavior of a structural 

member as the actual section of plate and the actual nonuniform stress 

distribution. 

Local buckling: the buckling of a compression element, which may precipitate the 

failure of the whole member. 

Postbuckling strength: the additional load, which can be carried by a plate element or 

structural member after buckling. 

Secant modulus, Es: the slope of the straight line from the original point to the 

considered point on the stress-strain curve of material in the inelastic range.  

Stability: the capacity of a compression member or element to remain in position and 

support load, even if forced slightly out of line or position by an added lateral 

force. In the elastic range, removal of the added lateral force would result in a 

return to the prior loaded position, unless the disturbance causes yielding to 

commence.  

Stub column: a short compression test specimen utilizing the complete cross section, 

sufficiently long to provide a valid measure of the stress-strain relationship as 
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averaged over the cross section, but short enough so that it will not buckle as a 

column in the elastic or plastic range. 

Tangent modulus, Et: the slope of the stress-strain curve of material in the inelastic 

range, at any given stress level. 
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